首页 > 其他分享 >利用pytorch自定义CNN网络(一):torchvision工具箱

利用pytorch自定义CNN网络(一):torchvision工具箱

时间:2023-08-09 10:11:36浏览次数:43  
标签:... torchvision 自定义 transform --- pytorch transforms data


本文是利用pytorch自定义CNN网络系列的第一篇,主要介绍 torchvision工具箱及其使用,关于本系列的全文见这里
笔者的运行设备与软件:CPU (AMD Ryzen™ 5 4600U) + pytorch (1.13,CPU版) + jupyter;
本文所用到的资源:链接:https://pan.baidu.com/s/1WgW3IK40Xf_Zci7D_BVLRg 提取码:1212

1. torchvision简介

torchvision是基于pytorch的工具箱,主要用来处理图像数据,其内包含一些常用的数据集、模型、图像转换等。torchvision工具箱主要包含以下四大模块:

  • torchvision.models:提供深度学习中各种经典的网络结构、预训练好的模型,如:Alex-Net、VGG、ResNet、Inception等。
  • torchvision.datasets:提供常用的数据集,设计上继承torch.utils.data.Dataset,主要包括:MNIST、CIFAR10/100、ImageNet、COCO等。
  • torchvision.transforms:提供常用的数据预处理操作,主要包括对Tensor及PIL Image对象的操作。
  • torchvision.utils:工具类,如保存张量作为图像到磁盘,给一个小批量创建一个图像网格。

2. torchvision.models简述

torchvision.models模块包含以下模型结构,AlexNet、VGG、GoogLeNet、ResNet、SqueezeNet、DenseNet等常用模型结构。其中,每个模型结构又可以根据卷积核大小、网络层深度等细分成不同的模型。例如,ResNet就提供了5种不同深度的模型,分别为resnet18、resnet34、resnet50、resnet101、resnet152。

2.1. 加载预训练模型及其参数权重

torchvision提供了各种模型的预训练模型,我们可以在此基础上针对性地调整,这大大减少了工作量。加载预训练模型的过程如下,这里以resnet18模型为例。

import torchvision
resnet18 = torchvision.models.resnet18(pretrained=True)

以上代码运行结果:
image.png
预训练模型加载完成后我们可以model.atate_dict()方法查看训练好的权重。

resnet18.state_dict()

部分运行结果:
image.png
现在,让我们进一步了解torchvision.models.resnet18()
语法:torchvision.models.resnet18(*, weights: Union[torchvision.models.resnet.ResNet18_Weights, NoneType] = None, progress: bool = True, **kwargs: Any) ---> torchvision.models.resnet.ResNet
参数:Union---是否使用预训练权重,默认不使用;当pretrained=True,使用预训练权重。
备注:resnet18 = torchvision.models.resnet18(),表示随机初始化权重创建模型。

2.2. 加载预训练模型并自定义参数权重

我们也可以只加载模型的网络结构,然后置入自定义的参数权重(该参数权重一定要符合该网络结构)。

import torchvision
# 导入模型的网络结构,并随机初始化参数权重
resnet18 = torchvision.models.resnet18()
# 查看随机参数权重
resnet18.state_dict()
# 加载本地的参数权重
resnet18.load_state_dict(torch.load("D:\\Users\\CV learning\\pytorch\\data\\resnet18-f37072fd.pth"))
# 查看加载后的参数权重
resnet18.state_dict()

2.3. 调整预训练模型

预训练的模型有些层并不是直接能用,需要我们微微改一下,比如,resnet最后的全连接层是分1000类,而我们只有21类;或resnet第一层卷积接收的通道是3, 我们可能输入图片的通道是4,那么可以通过以下方法修改:

from torchvision import models
from torch import nn

resnet34 = models.resnet34(pretrained=True, num_classes=1000)
# 默认是ImageNet上的1000分类,这里修改最后的全连接层为10分类问题
resnet34.fc = nn.Linear(512, 10)

3. torchvision.datasets简述

提供常用的数据集,设计上继承torch.utils.data.Dataset,主要包括:MNIST、Fashion-MNIST、CIFAR10/100、ImageNet、COCO等。

3.1. 加载网络数据集

torchvision提供的数据集允许从网络上下载,具体使用方法如下,我们以加载Fashion-MNIST为例。

from torchvision import datasets
data_train = datasets.FashionMNIST("D:\\Users\\CV learning\\pytorch\\data\\",
                                  download=True, train=False, transform=None)

现在,让我们详细了解一下torchvision.datasets.FashionMNIST()
语法:torchvision.datasets.FashionMNIST(root, train=True, transform=None, target_transform=None, download=False)
参数:
root---存放MNIST/processed/training.pt和MNIST/processed/test.pt的数据集的根目录。即,存放下载的或是要加载的数据集的根目录。
train---可选,如果为True,则从training.pt创建数据集,否则从test.pt创建数据集。
transform---可选,即图像变换操作。
target_transform---可选,接受目标并对其进行转换的函数/转换。
download---可选,如果为true,则从internet下载数据集并将其放在根目录中。如果数据集已下载,则不会再次下载。
备注:不同数据集的对应的函数不同,详见Datasets — Torchvision 0.15 documentation

3.2. 加载本地数据集

torchvision.datasets.ImageFolder可以用来加载本地数据集,它要求我们以下面这种格式来组织数据集的训练、验证或者测试图片。
image.png
语法:dataset=torchvision.datasets.ImageFolder(root, transform=None,target_transform=None, loader=, is_valid_file=None)
参数:
root---图片存储的根目录,即各类别文件夹所在目录的上一级目录。
transform---对图片进行预处理的操作(函数),原始图片作为输入,返回一个转换后的图片。
target_transform---对图片类别进行预处理的操作,输入为 target,输出对其的转换。 如果不传该参数,即对 target 不做任何转换,返回的顺序索引 0,1, 2…。root下的每个文件夹为一个类别。
loader---表示数据集加载方式,通常默认加载方式即可。
is_valid_file---获取图像文件的路径并检查该文件是否为有效文件的函数(用于检查损坏文件)
返回:返回的是一个dataset(也可以理解为Dataset的一个子类),它的结构就是[(img_data,class_id),(img_data,class_id),…]。
返回值的属性:
self.classes:用一个 list 保存类别名称。
self.class_to_idx:类别对应的索引,与不做任何转换返回的 target 对应。
self.imgs:保存(img-path, class) tuple的 list。
备注:torchvision.datasets.ImageFolder()的源码链接:torchvision.datasets.folder — Torchvision 0.15 documentation

from torchvision.datasets import ImageFolder
from torchvision import transforms

transform = transforms.ToTensor()
root = "D:\\Users\\CV learning\\pytorch\\data\\an"
dataset = ImageFolder(root, transform=transform)

print(dataset[0])			
print(dataset.classes)		#根据分的文件夹的名字来确定的类别
print(dataset.class_to_idx)	#按顺序为这些类别定义索引为0,1...
print(dataset.imgs)			#返回从所有文件夹中得到的图片的路径以及其类别
'''
(tensor([[[0.7961, 0.7961, 0.8000,  ..., 0.9412, 0.9373, 0.9333],
         [0.7961, 0.7961, 0.8000,  ..., 0.9451, 0.9412, 0.9333],
         [0.7961, 0.7961, 0.8000,  ..., 0.9451, 0.9412, 0.9373],
         ...,
         [0.6000, 0.6000, 0.6000,  ..., 0.0078, 0.0078, 0.0078],
         [0.5961, 0.5961, 0.5961,  ..., 0.0078, 0.0078, 0.0078],
         [0.5922, 0.5922, 0.5922,  ..., 0.0039, 0.0039, 0.0039]],

        [[0.6431, 0.6431, 0.6471,  ..., 0.7882, 0.7843, 0.7804],
         [0.6431, 0.6431, 0.6471,  ..., 0.7922, 0.7882, 0.7804],
         [0.6431, 0.6431, 0.6471,  ..., 0.7922, 0.7882, 0.7843],
         ...,
         [0.4784, 0.4784, 0.4784,  ..., 0.0078, 0.0078, 0.0078],
         [0.4745, 0.4745, 0.4745,  ..., 0.0078, 0.0078, 0.0078],
         [0.4706, 0.4706, 0.4706,  ..., 0.0039, 0.0039, 0.0039]],

        [[0.3412, 0.3412, 0.3451,  ..., 0.4784, 0.4745, 0.4706],
         [0.3412, 0.3412, 0.3451,  ..., 0.4824, 0.4784, 0.4706],
         [0.3412, 0.3412, 0.3451,  ..., 0.4824, 0.4784, 0.4745],
         ...,
         [0.2157, 0.2157, 0.2157,  ..., 0.0000, 0.0000, 0.0000],
         [0.2118, 0.2118, 0.2118,  ..., 0.0000, 0.0000, 0.0000],
         [0.2078, 0.2078, 0.2078,  ..., 0.0000, 0.0000, 0.0000]]]), 0)
['cat', 'dog']
{'cat': 0, 'dog': 1}
[('D:\\Users\\CV learning\\pytorch\\data\\an\\cat\\cat.0.jpg', 0),
('D:\\Users\\CV learning\\pytorch\\data\\an\\cat\\cat.1.jpg', 0),
('D:\\Users\\CV learning\\pytorch\\data\\an\\cat\\cat.2.jpg', 0),
('D:\\Users\\CV learning\\pytorch\\data\\an\\dog\\dog.0.jpg', 1),
('D:\\Users\\CV learning\\pytorch\\data\\an\\dog\\dog.1.jpg', 1),
('D:\\Users\\CV learning\\pytorch\\data\\an\\dog\\dog.2.jpg', 1)]
'''

4. torchvision.transforms简述

transforms包含了一些图像预处理操作,这些操作可以使用torchvison.transforms.Compose连在一起进行串联操作。这些操作有:

__all__ = ["Compose", "ToTensor", "ToPILImage", "Normalize", "Resize",
		   "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", 
		   "RandomCrop", "RandomHorizontalFlip",  "RandomVerticalFlip", "RandomResizedCrop",
		   "RandomSizedCrop", "FiveCrop", "TenCrop", "LinearTransformation", "ColorJitter", 
		   "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale"]
  • Compose():用来管理所有的transforms操作。
  • ToTensor():把图片数据转换成张量并转化范围在[0,1]区间内。
  • ToPILImage():将Tensor或numpy.ndarray转换为PIL Image。
  • Normalize(mean, std):归一化(标准化)。具体见,pytorch中归一化transforms.Normalize的真正计算过程
  • Resize(size):输入的PIL图像调整为指定的大小,参数可以为int或int元组。
  • CenterCrop(size):将给定的PIL Image进行中心切割,得到指定size的tuple。
  • Pad(padding, fill=0, padding_mode=‘constant’):对PIL边缘进行填充。
  • RandomApply(transforms, p=0.5):随机选取变换。
  • RandomCrop(size, padding=0):随机中心点切割。size可以是tuple也可以是Integer
  • RandomHorizontalFlip():随机水平翻转给定的PIL Image。
  • RandomVerticalFlip():随机垂直翻转给定的PIL Image。
  • FiveCrop(size):将给定的PIL图像裁剪成4个角落区域和中心区域。
  • RandomAffine(degrees, translate=None, scale=None):保持中心不变的图片进行随机仿射变化。
  • Grayscale(num_output_channels=1):对图像进行灰度变换。

备注:torchvision.transforms.Compose()的源码链接:torchvision.transforms.transforms — Torchvision 0.15 documentation
我们可以将transfors.Compose类的实例化可以理解成生成一个图像变换器,实例化过程中传入的参数就是图像的变换操作,操作之间是串联关系。

import torch
import torchvision
from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as plt

transform = transforms.Compose([transforms.ToTensor(),
                                transforms.Resize((300, 300)),
                                transforms.RandomAffine(degrees=30),
                                transforms.RandomHorizontalFlip(),
                                transforms.ToPILImage()])
img = Image.open("D:\\Users\\CV learning\\opencv learning\\image\\lena.jpg")
imgs1 = transform(img)
imgs2 = transform(img)
imgs3 = transform(img)
plt.subplot(1, 3, 1), plt.imshow(imgs1), plt.title("img1")
plt.subplot(1, 3, 2), plt.imshow(imgs2), plt.title("img2")
plt.subplot(1, 3, 3), plt.imshow(imgs3), plt.title("img3")
plt.show()

运行结果:
image.png
注:需要注意的是transforms模块中类或函数的操作对象是torch.Tensor类或PIL.Image.Image类。

5. torchvision.utils简述

torchvision.utils模块主要介绍两个函数,即torchvision.utils.make_grid()和torchvision.utils.save_image()函数。

5.1. torchvision.utils.make_grid()

torchvision.utils.make_grid()将多张图像组合成一张网格图像,和九宫格图像挺像的。
语法:torchvision.utils.make_grid(tensor: Union[Tensor, List[Tensor]], nrow: int = 8, padding: int = 2, normalize: bool = False, value_range: Optional[Tuple[int, int]] = None, scale_each: bool = False, pad_value: float = 0.0, kwargs) ---> torch.Tensor
参数:**
tensor(Tensor or list)---4维张量(Tensor.shape=(B x C x H x W))或相同尺寸的图像。
nrow(int, 可选 )---网格中每行显示的图像数量。
padding(int, 可选)---图像之间的填充像素数。
normalize(bool, 可选)---如果为True,将网格图像使用value_range的最小值和最大值进行归一化。
value_range (tuple, 可选)---归一化图像的最小值和最大值。默认情况下,最小值和最大值从张量计算。
scale_each (bool, 可选)---缩放批中的每个图像 图像单独显示,而不是所有图像上的(最小值、最大值)。
pad_value (float, 可选)---填充像素的大小。

from torchvision.datasets import ImageFolder
from torchvision import transforms
from torch.utils.data import DataLoader
import torchvision
import matplotlib.pyplot as plt

transform = transforms.Compose([transforms.ToTensor(),
                               transforms.Resize((300, 300))])
root = "D:\\Users\\CV learning\\pytorch\\data\\an"
dataset = ImageFolder(root, transform=transform)
data_loder = DataLoader(dataset=dataset, batch_size=32, shuffle=True)

for imgs, label in data_loder:
    img_tensor = torchvision.utils.make_grid(imgs, nrow=8, padding=10)
    imgs = transforms.ToPILImage()(img_tensor)
    plt.imshow(imgs)

运行结果如下:
image.png

5.2. torchvision.utils.save_image()

torchvision.utils.save_image()函数只能保存RGB彩色图像,如果网络的输出是单通道灰度图像,则该函数依然会输出三个通道,每个通道的数值都是相同的,即“伪灰度图像”。
语法:torchvision.utils.save_image(tensor: Union[torch.Tensor, List[torch.Tensor]], fp: Union[str, pathlib.Path, BinaryIO], format: Union[str, NoneType] = None, kwargs) ---> None
参数:**
tensor(Tensor or list)---要保存的图像的张量。如果是B x C x H x W形式的四维张量,需要将其转换为网格图像进行保存。
fp (string or file object)---保存路径。
format (可选)--- 如果省略,则使用要使用的格式从文件名扩展名确定。如果使用文件对象而不是文件名,则应始终使用此参数。

from torchvision.datasets import ImageFolder
from torchvision import transforms
from torch.utils.data import DataLoader
import torchvision

transform = transforms.Compose([transforms.ToTensor(),
                               transforms.Resize((300, 300))])
root = "D:\\Users\\CV learning\\pytorch\\data\\an"
dataset = ImageFolder(root, transform=transform)
data_loder = DataLoader(dataset=dataset, batch_size=8, shuffle=True)
i=0

for imgs, label in data_loder:
    img_tensor = torchvision.utils.make_grid(imgs, nrow=8, padding=10)
    torchvision.utils.save_image(img_tensor, fp=f"D:\\Users\\CV learning\\pytorch\\data\\an\\{i}.jpg")
    i+=1

image.png

6. 参考内容

  1. Pytorch torchvision库使用详情
  2. FashionMNIST — Torchvision 0.15 documentation
  3. torchvision.datasets.ImageFolder使用详解_HealthScience的博客-CSDN博客
  4. 【pytorch】transforms.Compose()使用
  5. make_grid — Torchvision 0.15 documentation

标签:...,torchvision,自定义,transform,---,pytorch,transforms,data
From: https://www.cnblogs.com/wpx123/p/17616101.html

相关文章

  • 切面实现下单请求防重提交功能(自定义注释@repeatSubmit)
    该切面功能适用场景下单请求多次提交,导致生成多个相同的订单解决方案前端解决:限制点击下单按钮为1次后失效。不足:用户体验下降,能绕过前端后端解决:防重提交切面解决,自定义注释实现该功能(如下)步骤:自定义注释类RepeatSubmit创建切面并有该注释绑定,在切面类实现防重提......
  • golang自定义 os.stderr 数据读取逻辑
    原始需求只是一个很简单的需求,使用golang的exec运行一个命令然后获取实时结果,命令是trivyimage--download-db-only正常的打印应该是2023-08-08T17:06:02.929+0800INFONeedtoupdateDB2023-08-08T17:06:02.929+0800INFODBRepository:ghcr.io/aquas......
  • WPF自定义TreeView滚动条样式
     根据客户需求,要在TreeView目录树上显示10万+个节点,但是目录树显示10万加节点后,整个页面操作起来非常卡,所以给目录树增加了虚拟化设置。但是虚拟化设置一直没生效,后来经过排查发现是使用的自定义滚动条导致了虚拟化设置没有生效,后来自己写了一个滚动条样式,问题解决了。目录树虚......
  • pytorch-两个PyTorch中的Sequential模型合并成一个
    要将两个PyTorch中的Sequential模型合并成一个,你可以使用nn.Sequential的add_module方法或者直接使用*操作符来解包Sequential模型并将它们合并。以下是两种方法的示例:方法一:使用add_module方法importtorch.nnasnn#假设你有两个Sequential模型seq1和seq2seq1=nn.Sequen......
  • 利用Python Flask蓝图加自定义蓝图划分优雅的目录结构
    我们在用Flask开发网站的时候。经常看到有很多人把所有的路由函数放到了入口文件,这种做法是非常不可取的,如果我们的视图函数有几百个了都写到一个文件里肯定是不行的。还有在实现中我们都在比较大型项目里面我们可能有十几个甚至几十个这种不同模型。我们需要考虑把这些模型分文别......
  • Log4netHelper, 支持自定义日志文件生成间隔
    usinglog4net;usinglog4net.Appender;usinglog4net.Config;usinglog4net.Repository;usingSystem;usingSystem.Collections.Generic;usingSystem.Linq;usingSystem.Text;usingSystem.Threading.Tasks;usingstaticlog4net.Appender.FileAppender;namespa......
  • PyTorch基础知识-新手笔记
    使用NumPy实现机器学习任务使用最原始的的NumPy实现一个有关回归的机器学习任务,不使用PyTorch中的包或类。代码可能会多一点,但每一步都是透明的,有利于理解每一步的工作原理。主要步骤如下:1)首先,给出一个数组x,然后基于表达式y=3x^2+2,加上一些噪声数据到达另一组数据。2)然后,构建......
  • 自定义类加载器
    自定义类加载器只需要继承java.lang.ClassLoader类,该类有两个核心方法,一个是loadClass(String,boolean),实现了双亲委派机制,还有一个方法是findClass,默认实现是空方法,所以我们自定义类加载器主要是重写findClass方法。publicclassMyClassLoaderTest{staticclassTest......
  • 在langchain中使用自定义example selector
    简介在之前的文章中,我们提到了可以在跟大模型交互的时候,给大模型提供一些具体的例子内容,方便大模型从这些内容中获取想要的答案。这种方便的机制在langchain中叫做FewShotPromptTemplate。如果例子内容少的话,其实无所谓,我们可以把所有的例子都发送给大语言模型进行处理。但是如......
  • 在langchain中使用自定义example selector
    简介在之前的文章中,我们提到了可以在跟大模型交互的时候,给大模型提供一些具体的例子内容,方便大模型从这些内容中获取想要的答案。这种方便的机制在langchain中叫做FewShotPromptTemplate。如果例子内容少的话,其实无所谓,我们可以把所有的例子都发送给大语言模型进行处理。但是如......