https://vjudge.net/problem/黑暗爆炸-3337
题意
试维护一个序列,支持以下 \(11\) 种操作:
输入格式 | 说明 |
---|---|
1 x w |
在 \(a_x\) 后插入 \(w\) |
2 x |
删除 \(a_x\) |
3 x y |
翻转 \((a_x, a_{x + 1}, \dots, a_y)\) |
4 x y k |
将 \((a_x, a_{x + 1}, \dots, a_y)\) 右移 \(k\) 次 |
5 x y w |
将 \(a_x, a_{x + 1}, \dots, a_y\) 都加上 \(w\) |
6 x y w |
将 \(a_x, a_{x + 1}, \dots, a_y\) 都赋值为 \(w\) |
7 x y |
查询 \(\displaystyle \sum_{i = x}^{y} a_i\) |
8 x y |
查询 \(a_x, a_{x + 1}, \dots, a_y\) 的极差 |
9 x y w |
查询 \(a_x, a_{x + 1}, \dots, a_y\) 中与 \(w\) 的绝对差的最小值 |
10 x y k |
查询 \(a_x, a_{x + 1}, \dots, a_y\) 中第 \(k\) 小的数的值 |
11 x y w |
查询 \(a_x, a_{x + 1}, \dots, a_y\) 中比 \(w\) 小的数的数量 |
设 \(n\) 为序列最长时的长度,\(q\) 为操作次数,数据范围:
\(1 \leq n, q \leq 10^5, 0 \leq a_i < 2^{31}\)。
sample.in
6
5 2 6 3 1 4
15
7 2 4
8 1 3
9 2 4 5
10 1 6 4
11 2 5 4
6 1 4 7
8 1 4
5 3 4 5
2 1
1 2 8
3 3 5
4 1 5 2
9 2 5 4
10 3 6 4
11 1 6 100
sample.out
11
4
1
4
3
0
3
12
6
标签:dots,10,题解,查询,leq,ORZJRY,11,BZOJ3337
From: https://www.cnblogs.com/RB16B/p/17612756.html