\(\mathcal{Description}\)
\(n\)个点,每个点有点权,有\(m\)个区间,要选择一些点使得所有区间里都有点,求最小总点权
\(n,m\le 5×10^5\)
\(\mathcal{Solution}\)
广东省赛好水啊,感觉单挑都可以至少\(6\)题
这题属于一眼题了,不知为何过的很少
设\(f_i\)表示\([1, i]\)这个区间全部满足条件并且选择了\(i\)的最少花费
令\(n+1\)有一个点且点权为\(0\),则答案就是\(f_{n+1}\)
转移方程\(f_i=min\{f_j\}\)其中要满足\([j+1,i-1]\)之间没有要求区间,考虑\(j\)的合法区间,假设为\([k,i-1]\),当\(i\)变为\(i+1\)时,如果有一个区间以i结尾并且左端点在\([k,i]\)之间,那么对于\(i+1\)来说,\(j\)的区间会变小,这个过程中,\(j\)的区间只会越来越往右变小,因此可以用单调栈维护这个\(dp\)
\(\mathcal{Code}\)
#include <cstdio>
#include <algorithm>
#define ll long long
using namespace std;
const int maxn = 5e5 + 10;
struct IO {
template <class T>
IO operator>>(T &res) {
res = 0;
char ch;
bool flag = false;
while ((ch = getchar()) > '9' || ch < '0') flag |= ch == '-';
while (ch >= '0' && ch <= '9') res = (res << 3) + (res << 1) + (ch ^ '0'), ch = getchar();
if (flag) res = ~res + 1;
return *this;
}
} cin;
int T, n, m, hd, ed;
int a[maxn], l[maxn], q[maxn];
ll f[maxn];
void solve ()
{
cin >> n;
for (int i = 1; i <= n; ++i) cin >> a[i], l[i] = 0;
cin >> m;
for (int i = 1, lt, rt; i <= m; ++i) {
cin >> lt >> rt;
l[rt] = max(l[rt], lt);
}
q[hd = ed = 1] = 0;
a[++n] = 0;
for (int i = 1; i <= n; ++i) {
f[i] = f[q[hd]] + a[i];
while (hd <= ed && f[q[ed]] > f[i]) --ed;
q[++ed] = i;
while (q[hd] < l[i]) ++hd;
}
printf("%lld\n", f[n]);
}
int main ()
{
cin >> T;
while (T--) solve();
return 0;
}
标签:Station,rt,ch,int,lt,while,Base,Construction,区间 From: https://www.cnblogs.com/Morning-Glory/p/17608455.html如有哪里讲得不是很明白或是有错误,欢迎指正
如您喜欢的话不妨点个赞收藏一下吧