多线程
线程简介
- 线程就是独立的执行路径
- 在程序运行时,即使没有自己创建线程,后台也会有多个线程,如主线程,gc线程
- main())称之为主线程,为系统的入口,用于执行整个程序
- 在一个进程中,如果开辟了多个线程,线程的运行由调度器安排调度,调度器是与操作系统紧密相关的,先后顺序是不能人为的干预的
- 对同一份资源操作时,会存在资源抢夺的问题,需要加入并发控制
- 线程会带来额外的开销,如cpu调度时间,并发控制开销
- 每个线程在自己的工作内存交互,内存控制不当会造成数据不一致
线程实现(重点)
线程创建
三种创建方式:
- 继承Thread类(重点)
/**
* 创建线程方式一
* 1.继承Thread类
* 2.重写run()方法
* 3.调用start开启线程
* 注意:线程开启不一定立即执行,由CPU调度执行
*/
public class Demo01 extends Thread{
@Override
public void run() {
//run方法线程体
for (int i = 0; i < 20; i++) {
System.out.println("我在看代码-"+i);
}
}
public static void main(String[] args) {
//main线程,主线程
//创建一个线程对象
Demo01 demo01 = new Demo01();
//调用start()方法开启线程
demo01.start();
for (int i = 0; i < 20; i++) {
System.out.println("我在学习多线程-"+i);
}
}
}
import org.apache.commons.io.FileUtils;
import java.io.File;
import java.io.IOException;
import java.net.URL;
/**
* 练习Thread,实现多线程同步下载图片
*/
public class Demo02 extends Thread{
private String url; //网络图片地址
private String name; //保存的文件名
public Demo02(String url,String name){
this.url = url;
this.name = name;
}
//下载图片线程的执行体
@Override
public void run() {
WebDownloader webDownloader = new WebDownloader();
webDownloader.downloader(url,name);
System.out.println("下载了文件名为:"+name);
}
public static void main(String[] args) {
Demo02 d1 = new Demo02("https://blog.kuangstudy.com/usr/themes/handsome/usr/img/sj/1.jpg","1.jpg");
Demo02 d2 = new Demo02("https://blog.kuangstudy.com/usr/themes/handsome/usr/img/sj/2.jpg","2.jpg");
Demo02 d3 = new Demo02("https://blog.kuangstudy.com/usr/themes/handsome/usr/img/sj/3.jpg","3.jpg");
d1.start();
d2.start();
d3.start();
}
}
//下载器
class WebDownloader{
//下载方法
public void downloader(String url,String name){
try {
FileUtils.copyURLToFile(new URL(url),new File(name));
} catch (IOException e) {
e.printStackTrace();
System.out.println("IO异常,downloader方法出现问题");
}
}
}
- 实现Runnable接口(重点)
/**
* 创建线程方式二
* 1.实现Runnable接口
* 2.重写run()方法,执行线程需要丢入Runnable接口实现类
* 3.调用start()方法
*/
public class Demo01 implements Runnable{
@Override
public void run() {
//run方法线程体
for (int i = 0; i < 20; i++) {
System.out.println("我在看代码-"+i);
}
}
public static void main(String[] args) {
//创建Runnable接口的实现类对象
Demo01 demo01 = new Demo01();
//创建线程对象,通过线程对象来开启我们的线程,代理
//Thread thread = new Thread(Demo01);
//thread.start();
new Thread(demo01).start();
for (int i = 0; i < 20; i++) {
System.out.println("我在学习多线程-"+i);
}
}
}
龟兔赛跑(案例)
/**
* 模拟龟兔赛跑
*/
public class Demo03 implements Runnable{
private static String winner;
@Override
public void run() {
for (int i = 0; i <= 100; i++) {
//模拟兔子休息
if (Thread.currentThread().getName().equals("兔子") && i%10 == 0){
try {
Thread.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//判断比赛是否结束
boolean flag = gameOver(i);
if (flag == true){
break;
}
System.out.println(Thread.currentThread().getName()+"跑了"+i+"步");
}
}
//判断是否完成比赛
private boolean gameOver(int steps){
//判断是否有胜利者
if (winner != null){ //已经存在胜利者了
return true;
}{
if (steps >= 100){
winner = Thread.currentThread().getName();
System.out.println("winner is"+winner);
return true;
}
}
return false;
}
public static void main(String[] args) {
Demo03 race = new Demo03();
new Thread(race,"兔子").start();
new Thread(race,"乌龟").start();
}
}
-
实现Callable接口(了解)
- 实现Callable接口,需要返回值类型
- 重写call方法,需要抛出异常
- 创建目标对象
- 创建执行服务:ExecutorService ser = Executor.newFixedThreadPool(1);
- 提交执行:Future
result1 = ser.submit(t1); - 获取结果:boolean r1 = result.get();
- 关闭服务:ser.shutdownNow();
import org.apache.commons.io.FileUtils;
import java.io.File;
import java.io.IOException;
import java.net.URL;
import java.util.concurrent.*;
/**
* 线程创建方式三:实现Callable接口
*/
public class Demo01 implements Callable<Boolean> {
private String url; //网络图片地址
private String name; //保存的文件名
public Demo01(String url,String name){
this.url = url;
this.name = name;
}
@Override
public Boolean call() {
WebDownloader webDownloader = new WebDownloader();
webDownloader.downloader(url,name);
System.out.println("下载了文件名为:"+name);
return true;
}
public static void main(String[] args) throws ExecutionException, InterruptedException {
Demo01 d1 = new Demo01("https://blog.kuangstudy.com/usr/themes/handsome/usr/img/sj/1.jpg","1.jpg");
Demo01 d2 = new Demo01("https://blog.kuangstudy.com/usr/themes/handsome/usr/img/sj/2.jpg","2.jpg");
Demo01 d3 = new Demo01("https://blog.kuangstudy.com/usr/themes/handsome/usr/img/sj/3.jpg","3.jpg");
//创建执行服务
ExecutorService ser = Executors.newFixedThreadPool(3);
//提交执行
Future<Boolean> r1 = ser.submit(d1);
Future<Boolean> r2 = ser.submit(d2);
Future<Boolean> r3 = ser.submit(d3);
//获取结果
boolean rs1 = r1.get();
boolean rs2 = r2.get();
boolean rs3 = r3.get();
System.out.println(rs1);
System.out.println(rs2);
System.out.println(rs3);
//关闭服务
ser.shutdown();
}
//下载器
class WebDownloader{
//下载方法
public void downloader(String url,String name){
try {
FileUtils.copyURLToFile(new URL(url),new File(name));
} catch (IOException e) {
e.printStackTrace();
System.out.println("IO异常,downloader方法出现问题");
}
}
}
}
静态代理
/**
* 静态代理模式总结:
* 1.真实对象和代理对象都要实现同一个接口
* 2.代理对象要代理真实角色
* 好处:
* 1.代理对象可以做很多真实对象做不了的事情
* 2.真实对象专注做自己的事情
*/
public class Demo01 {
public static void main(String[] args) {
You you = new You(); //你要结婚
WeddingCompany weddingCompany = new WeddingCompany(you);
weddingCompany.HappyMarry();
}
}
interface Marry{
void HappyMarry();
}
//真实角色,你去结婚
class You implements Marry{
@Override
public void HappyMarry() {
System.out.println("结婚很开心");
}
}
//代理角色,帮助你结婚
class WeddingCompany implements Marry{
private Marry target;
public WeddingCompany(Marry target){
this.target = target;
}
@Override
public void HappyMarry() {
before();
this.target.HappyMarry(); //这就是真实对象
after();
}
private void before() {
System.out.println("结婚之前,布置现场");
}
private void after() {
System.out.println("结婚之后,收尾款");
}
}
Lambda表达式
好处:
- 避免匿名内部类定义过多
- 可以让你的代码看起来很简洁
- 去掉了一堆没有意义的代码,只留下核心的逻辑
/**
* 推导Lamda表达式
*/
public class Demo01 {
//3.静态内部类
static class Like2 implements ILike{
@Override
public void lamda() {
System.out.println("i like lamda2");
}
}
public static void main(String[] args) {
Like1 like1 = new Like1();
like1.lamda();
Like2 like2 = new Like2();
like2.lamda();
//4.局部内部类
class Like3 implements ILike{
@Override
public void lamda() {
System.out.println("i like lamda3");
}
}
Like3 like3 = new Like3();
like3.lamda();
//5.匿名内部类:没有类的名称,必须借助接口或者父类
ILike like = new ILike() {
@Override
public void lamda() {
System.out.println("i like lamda4");
}
};
like.lamda();
//6.用lamda简化
like = ()->{
System.out.println("i like lamda5");
};
like.lamda();
}
}
/**
* 总结:
* 1.lambda表达式只能有一行代码的情况下才能简化成一行,如果有多行,那么就用代码块包裹
* 2.前提是接口为函数式接口
* 3.多个参数也可以去掉参数类型,要去掉都去掉,必须加上括号
*/
public class Demo02 {
public static void main(String[] args) {
//1.lambda表示简化
ILove love = (int a) -> {
System.out.println("i love you"+a);
};
//简化1.参数类型
love = (a) -> {
System.out.println("i love you"+a);
};
//简化2.简化括号
love = a -> {
System.out.println("i love you"+a);
};
//简化3.去掉花括号
love = a -> System.out.println("i love you"+a);
love.love(2);
}
}
interface ILove{
void love(int a);
}
线程状态
方法 | 说明 |
---|---|
setPriority(int newPriority) | 更改线程的优先级 |
static void sleep(long millis) | 在指定的毫秒数内让当前正在执行的线程休眠 |
void join() | 等待该线程终止 |
static void yield() | 暂停当前正在执行的线程对象,并执行其他线程 |
void interrupt() | 中断线程,别用这个方式 |
boolean isAlive() | 测试线程是否处于活动状态 |
线程停止
/**
* 测试stop
* 1.建议线程正常停止-->利用次数,不建议死循环
* 2.建议使用标志位-->设置一个标志位
* 3.不要使用stop或者destroy等过时或者JDK不建议使用的方法
*/
public class Demo01 implements Runnable{
//1.设置一个标志位
private boolean flag = true;
@Override
public void run() {
int i = 0;
while (flag){
System.out.println(i++);
}
}
//2.设置一个公开的方法停止线程,转换标志位
public void stop(){
this.flag = false;
}
public static void main(String[] args) {
Demo01 demo01 = new Demo01();
new Thread(demo01).start();
for (int i = 0; i < 1000; i++) {
System.out.println("main"+i);
if (i == 900){
//调用stop方法切换标志位,让线程停止
demo01.stop();
System.out.println("线程停止");
}
}
}
}
线程休眠
public class Demo02 implements Runnable{
//票数
private int ticketNums = 10;
@Override
public void run() {
while (true){
if (ticketNums<=0){
break;
}
//模拟延时
try {
Thread.sleep(200);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()+"拿到了第"+ticketNums--+"张票");
}
}
public static void main(String[] args) {
Demo02 ticket = new Demo02();
new Thread(ticket,"小明").start();
new Thread(ticket,"小红").start();
new Thread(ticket,"小强").start();
}
}
import java.text.SimpleDateFormat;
import java.util.Date;
/**
* 模拟倒计时
*/
public class Demo03 {
public static void main(String[] args) throws InterruptedException {
//tenDown();
//打印当前系统时间
Date date = new Date(System.currentTimeMillis()); //获取当前时间
while (true){
Thread.sleep(1000);
System.out.println(new SimpleDateFormat("HH:mm:ss").format(date));
date = new Date(System.currentTimeMillis());
}
}
public static void tenDown() throws InterruptedException {
int num = 10;
while (true){
Thread.sleep(1000);
System.out.println(num--);
if (num<=0){
break;
}
}
}
}
线程礼让
/**
* 测试礼让线程
* 礼让不一定成功,看CPU心情
*/
public class Demo04 {
public static void main(String[] args) {
MyYield myYield = new MyYield();
new Thread(myYield,"a").start();
new Thread(myYield,"b").start();
}
}
class MyYield implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"线程开始执行");
Thread.yield();
System.out.println(Thread.currentThread().getName()+"线程停止执行");
}
}
线程强制执行
public class Demo05 implements Runnable{
@Override
public void run() {
for (int i = 0; i < 100; i++) {
System.out.println("线程vip来了"+i);
}
}
public static void main(String[] args) throws InterruptedException {
//启动线程
Demo05 demo05 = new Demo05();
new Thread(demo05).start();
//主线程
for (int i = 0; i < 500; i++) {
if (i == 200){
new Thread().join();
}
System.out.println("main线程"+i);
}
}
}
观测线程状态
/**
* 观察测试线程的状态
*/
public class Demo06 {
public static void main(String[] args) {
Thread thread = new Thread(()->{
for (int i = 0; i < 5; i++) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("/////");
});
//观察状态
Thread.State state = thread.getState();
System.out.println(state);
//观察启动后
thread.start();
state = thread.getState();
System.out.println(state);
while (state != Thread.State.TERMINATED){ //只要线程不停止,就一直输出状态
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
state = thread.getState(); //更新线程状态
System.out.println(state); //输出状态
}
}
}
线程优先级
/**
* 测试线程的优先级
*/
public class Demo07 {
public static void main(String[] args) {
//主线程默认优先级
System.out.println(Thread.currentThread().getName()+"-->"+Thread.currentThread().getPriority());
MyPriority myPriority = new MyPriority();
Thread t1 = new Thread(myPriority);
Thread t2 = new Thread(myPriority);
Thread t3 = new Thread(myPriority);
//先设置优先级,在启动
t1.start();
t2.setPriority(Thread.MAX_PRIORITY);
t2.start();
t3.setPriority(4);
t3.start();
}
}
class MyPriority implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"-->"+Thread.currentThread().getPriority());
}
}
守护(deamon)线程
/**
* 测试守护线程
*/
public class Demo08 {
public static void main(String[] args) {
God god = new God();
You you = new You();
Thread thread = new Thread(god);
thread.setDaemon(true); //默认是false表示用户线程,正常的线程都是用户线程
thread.start();
new Thread(you).start();
}
}
class You implements Runnable{
@Override
public void run() {
for (int i = 0; i < 100; i++) {
System.out.println("hello world");
}
System.out.println("goodbye world");
}
}
class God implements Runnable{
@Override
public void run() {
while (true){
System.out.println("上帝保佑");
}
}
}
线程同步(重点)
并发:同一个对象被多个线程同时操作
同步块
同步块:synchronized(obj){}
Obj称之为 同步监视器
- Obj可以是任何对象,但是推荐使用共享资源作为同步监视器
- 同步方法中无需指定同步监视器,因为同步方法的同步监视器就是this,就是这个对象本身,或者是class[反射中讲解]
同步监视器的执行过程
- 第一个线程访问,锁定同步监视器,执行其中代码
- 第二个线程访问,发现同步监视器被锁定,无法访问
- 第一个线程访问完毕,解锁同步监视器
- 第二个线程访问,发现同步监视器没有锁,然后锁定并访问
/**
* 不安全的买票
* 线程不安全,有负数
*/
public class Demo01 {
public static void main(String[] args) {
BuyTicket buyTicket = new BuyTicket();
Thread t1 = new Thread(buyTicket, "我");
Thread t2 = new Thread(buyTicket,"你");
Thread t3 = new Thread(buyTicket,"他");
t1.start();
t2.start();
t3.start();
}
}
class BuyTicket implements Runnable{
//票
private int ticketNum = 10;
boolean flag = true;
@Override
public void run() {
//买票
while (flag){
try {
buy();
} catch (InterruptedException e) {
e.printStackTrace();
}
;
}
}
private synchronized void buy() throws InterruptedException {
//判断是否有票
if (ticketNum <= 0){
flag = false;
return;
}
//模拟延时
Thread.sleep(100);
System.out.println(Thread.currentThread().getName()+"拿到了第"+ticketNum--+"张票");
}
}
/**
* 不安全的取钱
* 两个人去银行取钱,账户
*/
public class Demo02 {
public static void main(String[] args) {
//账户
Account account = new Account(100,"结婚基金");
Drawing you = new Drawing(account,50,"你");
Drawing she = new Drawing(account,100,"她");
you.start();
she.start();
}
}
//账户
class Account{
int money; //余额
String name; //卡名
public Account(int money, String name) {
this.money = money;
this.name = name;
}
}
//银行
class Drawing extends Thread{
Account account;
//取了多少钱
int drawingMoney;
//现在手里有多少钱
int nowMoney;
public Drawing(Account account,int drawingMoney,String name){
super(name);
this.account = account;
this.drawingMoney = drawingMoney;
}
//取钱
@Override
public void run() {
synchronized (account) {
//判断有没有钱
if (account.money - drawingMoney < 0) {
System.out.println(Thread.currentThread().getName() + "钱不够,取不了");
return;
}
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
//卡内余额 = 余额 - 你取的钱
account.money = account.money - drawingMoney;
//你手里的钱
nowMoney = nowMoney + drawingMoney;
System.out.println(account.name + "余额为" + account.money);
System.out.println(this.getName() + "手里的钱" + nowMoney);
}
}
}
import java.util.ArrayList;
/**
* 线程不安全的集合
*/
public class Demo03 {
public static void main(String[] args) {
ArrayList<String> list = new ArrayList<>();
for (int i = 0; i < 1000; i++) {
new Thread(() -> {
synchronized (list){
list.add(Thread.currentThread().getName());
}
}).start();
}
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(list.size());
}
}
死锁
产生死锁的四个必要条件:
- 互斥条件:一个资源每次只能被一个进程使用
- 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放
- 不剥夺条件:进程已获得的资源,在未使用完之前,不能强行剥夺
- 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系
/**
* 死锁:多个线程互相抱着对方需要的资源,然后形成僵持
*/
public class Demo05 {
public static void main(String[] args) {
Makeup g1 = new Makeup(0,"ggg");
Makeup g2 = new Makeup(1,"yyy");
g1.start();
g2.start();
}
}
//口红
class Lipstick{
}
//镜子
class Mirror{
}
class Makeup extends Thread{
static Lipstick lipstick = new Lipstick();
static Mirror mirror = new Mirror();
int choice;
String girlName;
Makeup(int choice,String girlName){
this.choice = choice;
this.girlName = girlName;
}
@Override
public void run() {
try {
makeup();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//化妆,互相持有对方的锁,就是需要拿到对方的资源
private void makeup() throws InterruptedException {
if (choice == 0){
synchronized (lipstick){
System.out.println(this.girlName+"获得口红的锁");
Thread.sleep(1000);
}
synchronized (mirror){ //一秒钟后想获得镜子
System.out.println(this.girlName+"获得镜子的锁");
}
}else {
synchronized (mirror){
System.out.println(this.girlName+"获得镜子的锁");
Thread.sleep(2000);
}
synchronized (lipstick){ //两秒钟后想获得口红
System.out.println(this.girlName+"获得口红的锁");
}
}
}
}
Lock锁
synchronized与 Lock 的对比:
- Lock是显式锁(手动开启和关闭锁,别忘记关闭锁),synchronized是隐式锁,出了作用域自动释放
- Lock只有代码块锁,synchronized有代码块锁和方法锁
- 使用Lock锁,JVM将花费较少的时间来调度线程,性能更好.并且具有更好的扩展性(提供更多的子类)
- 优先使用顺序:
Lock >同步代码块 (已经进入了方法体,分配了相应资源)>同步方法(在方法体之外)
import java.util.concurrent.locks.ReentrantLock;
/**
* 测试Lock锁
*/
public class Demo01 {
public static void main(String[] args) {
Lock lock = new Lock();
new Thread(lock).start();
new Thread(lock).start();
new Thread(lock).start();
}
}
class Lock implements Runnable{
int ticketNum = 10;
//定义Lock锁
private final ReentrantLock lock = new ReentrantLock();
@Override
public void run() {
while (true){
try{
//加锁
lock.lock();
if (ticketNum > 0){
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(ticketNum--);
}else{
break;
}
}finally {
//解锁
lock.unlock();
}
}
}
}
线程通信问题
Java提供了几个方法解决线程之间的通信问题
方法名 | 作用 |
---|---|
wait() | 表示线程一直等待,直到其他线程通知,与sleep不同,会释放锁 |
wait(long timeout) | 指定等待的毫秒数 |
notify() | 唤醒一个处于等待状态的线程 |
notifyAll() | 唤醒同一个对象上所有调用wait()方法的线程,优先级别高的线程优先调度 |
注意:均是Object类的方法,都只能在同步方法或者同步代码块中使用,否则会抛出异常IIIegalMonitorStateException
/**
* 测试生产者消费者模型
* 管程法:利用缓冲区解决
*/
public class Demo01 {
public static void main(String[] args) {
SynContainer container = new SynContainer();
new Productor(container).start();
new Consumer(container).start();
}
}
//生产者
class Productor extends Thread{
SynContainer container;
public Productor(SynContainer container){
this.container = container;
}
//生产
@Override
public void run() {
for (int i = 0; i < 100; i++) {
container.push(new Chicken(i));
System.out.println("生产了"+i+"只鸡");
}
}
}
//消费者
class Consumer extends Thread{
SynContainer container;
public Consumer(SynContainer container){
this.container = container;
}
//消费
@Override
public void run() {
for (int i = 0; i < 100; i++) {
System.out.println("消费了"+container.pop().id+"只鸡");
}
}
}
//产品
class Chicken{
int id;
public Chicken(int id) {
this.id = id;
}
}
//缓冲区
class SynContainer{
//需要一个容器大小
Chicken[] chickens = new Chicken[10];
//容器计数器
int count = 0;
//生产者放入产品
public synchronized void push(Chicken chicken){
//如果容器满了,就需要等待消费者消费
if (count == chickens.length){
//通知消费者消费
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//如果没有满,我们就需要丢入产品
chickens[count] = chicken;
count++;
//可以通知消费者消费了
this.notifyAll();
}
//消费者消费产品
public synchronized Chicken pop(){
//判断能否消费
if (count == 0){
//等待生产者生产,消费者等待
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//如果可以消费
count--;
Chicken chicken = chickens[count];
//吃完了,通知生产者生产
this.notifyAll();
return chicken;
}
}
/**
* 测试生产者消费者2
* 信号灯法:标志位解决
*/
public class Demo02 {
public static void main(String[] args) {
TV tv = new TV();
new Player(tv).start();
new Watcher(tv).start();
}
}
//生产者->演员
class Player extends Thread{
TV tv;
public Player(TV tv){
this.tv = tv;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
if (i%2 == 0){
this.tv.play("11111");
}else{
this.tv.play("22222");
}
}
}
}
//消费者->观众
class Watcher extends Thread{
TV tv;
public Watcher(TV tv){
this.tv = tv;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
tv.watch();
}
}
}
//产品->节目
class TV{
//演员表演,观众等待
//观众观看,演员等待
String voice; //表演的节目
boolean flag = true;
//表演
public synchronized void play(String voice){
if (!flag){
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("演员表演了"+voice);
//通知观众观看
this.notifyAll(); //通知唤醒
this.voice = voice;
this.flag = !this.flag;
}
//观看
public synchronized void watch(){
if (flag){
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("观众观看了"+voice);
//通知演员表演
this.notifyAll();
this.flag = !this.flag;
}
}
线程池
背景:经常创建和销毁.使用量特别大的资源,比如并发情况下的线程,对性能影响很大
思路:提前创建好多个线程,放入线程池中,使用时直接获取,使用完放回池中可以避免频繁创建销毁.实现重复利用.类似生活中的公共交通工具
好处:
- 提高响应速度(减少了创建新线程的时间)
- 降低资源消耗(重复利用线程池中线程,不需要每次都创建)
- 便于线程管理(...)
- corePoolSize:核心池的大小
- maximumPoolSize: 最大线程数
- keepAliveTime: 线程没有任务时最多保持多长时间后会终止
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
/**
* 测试线程池
*/
public class Demo01 {
public static void main(String[] args) {
//1.创建服务,创建线程池
//newFixedThreadPool 参数为:线程池大小
ExecutorService executorService = Executors.newFixedThreadPool(10);
//执行
executorService.execute(new MyThread());
executorService.execute(new MyThread());
executorService.execute(new MyThread());
//2.关闭链接
executorService.shutdown();
}
}
class MyThread implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName());
}
}
标签:Thread,void,System,线程,new,多线程,public
From: https://www.cnblogs.com/gy486926/p/17596736.html