优点:
(1) 解决了 分类器不好处理离散数据 的问题。
a. 欧式空间。在回归,分类,聚类等机器学习算法中,特征之间距离计算 或 相似度计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。
b. one-hot 编码。使用 one-hot 编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值 就 对应欧式空间的某个点。将离散型特征使用 one-hot 编码,确实会让 特征之间的距离计算 更加合理。
(2) 在一定程度上也起到了 扩充特征 的作用。
缺点:
在文本特征表示上有些缺点就非常突出了。
(1) 它是一个词袋模型,不考虑 词与词之间的顺序(文本中词的顺序信息也是很重要的);
(2) 它 假设词与词相互独立(在大多数情况下,词与词是相互影响的);
(3) 它得到的 特征是离散稀疏 的 (这个问题最严重)。
参考资料:
机器学习数据预处理1:独热编码(One-Hot)及其代码