首页 > 其他分享 >聊聊时下火热的 AIGC 与 Web3

聊聊时下火热的 AIGC 与 Web3

时间:2023-08-01 15:33:20浏览次数:44  
标签:AI 模型 AIGC 生成 Web3 内容 聊聊 自然语言

近期,AI 已经开始影响到了音乐行业,在 B 站搜索“AI 孙燕姿”,从流行歌曲到摇滚,从周杰伦到王力宏,没有 AI 孙燕姿驾驭不了的歌曲。

有用户评论:“我感觉 AI 没把歌手干掉,先把翻唱干掉了。” AI 走红“乐坛”的时间不足一个月,而 AI 绘画对设计师的影响可不止一个月。自从 AIGC 诞生以来,AI 绘画软件可以在短短几分钟内生成高质量图像,对原画师、设计师产生了巨大冲击,不少公司更开始用 AI 绘画软件来辅助甚至替代原画师的工作。

Web1.0到Web3.0

AIGC 那么厉害,它会成为 Web 3.0 时代的内容生产力工具吗?我们先来简单了解下,从Web 1.0 时代到 Web 3.0 时代,内容生产模式上有什么变化。

Web 1.0 时代主要是单项信息传递的“只读”模式。媒体形式以新浪、搜狐、雅虎、百度这类门户网站为主,某些特定的群体或企业将信息单向发布至网络,投喂给用户浏览阅读。在这个过程中,用户只能被动接收网站发布的无差异信息,但不能上传自己的反馈、进行和其他人的线上实时沟通。

到了 Web 2.0,人与人通过网络沟通交流,各种交互多了起来。随之而来的,是内容生产模式的改变,内容从单一的 PGC (专业生成内容)到 PGC+UGC(用户生成内容)的结合,直到现在,UGC 已占据了主要市场。

当我们迈入 Web 3.0 时代,人工智能、数据、语义网络构建,形成新的人与网络的全新链接,内容消费飞速增长。届时,PGC 和 UGC 难以满足迅速扩张的内容需求,而 AIGC 将成为 Web3 时代的生产力工具。AIGC 的生成利用人工智能知识图谱,在内容创作上为人类提供协助或者完全自主生成,不仅可以提供内容生成的效率,还可以拓展内容的多样性。或许在 Web 3.0 时代,文字生成、图片绘制、视频内容都由 AIGC 来完成,甚至文娱向的音乐创作、游戏内容生成 AIGC 都能胜任。

AIGC的技术原理

AIGC 即将成为 Web3.0 主要的内容生产者,那么是什么决定 AIGC 的产出质量?

AIGC 的产出质量主要有三大核心要素:数据、算法和算力。

  • 数据:海量优质的应用场景数据是训练算法精确性关键基础,数据包括语音、文本、影像等。
  • 算法:神经网络、深度学习等算法是挖掘数据智能的有效方法。与传统机器深度机器学习算法不同,神经网络在学习范式+网络结构上的迭代提升了 AI 算法的学习能力。
  • 算力:计算机、芯片等载体为 AIGC 提供基本的计算能力。算力是基础设施,AI 算法模型对算力有巨大需求。

说到这里,如果还有小伙伴没有玩过 AI 绘画,我们之前有写过一篇《从 0 到 1,带你玩转 AI 绘画》 ,里面详细介绍了如何用 Stable Diffusion GUI 搭建自己的AI 作图环境。搭建的时候建议大家使用 GPU 主机,可以让一张图片生成时间从几十分钟缩短到几十秒。对 GPU 感兴趣的小伙伴,可点击文末“阅读原文”了解 GPU 详情。

AI 强大的创造能力,除了海量数据和硬件算力的支持,算法这块离不开两个核心技术 NLP(Natural Language Processing,自然语言处理) 和算法模型的发展。

自然语言处理NLP

自然语言处理(Natural Language Processing,缩写作 NLP)是人工智能和语言学领域的分支学科,主要探讨如何处理及运用自然语言;自然语言处理包括多方面和步骤,基本有认知、理解、生成等部分。

自然语言认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言。说直白点,其实就是让人和机器交互中,能够让双方都“听得懂”。

自然语言处理有两个核心任务,自然语言理解(NLU)和自然语言生成(NLG)。

自然语言理解 NLU

自然语言理解是研究如何让电脑读懂人类语言的一门技术,是自然语言处理技术中最困难的一项。自然语言理解是希望机器像人一样,具备正常人的语言理解能力。为什么说自然语言理解是 NLP 上最困难的一项,我们简单看几个例子就知道了。

校长说衣服上除了校徽别别别的。

今天下雨,我骑车差点摔倒,好在我一把把把把住了!

今天我差点没上上上上海的车。

这些还只是相对简单的,还有一些更复杂的,例如:

阿呆给领导送礼。

领导:“你这是什么意思?”

阿呆:“没什么意思,意思意思。” 领导:“你这就不够意思了。”

阿呆:“小意思,小意思。” 领导:“你这人真有意思。”

阿呆:“其实也没有别的意思。”

领导:“那我就不好意思了。”

阿呆:“是我不好意思。”

由于自然语言的多样性、歧义性、知识依赖性和上下文,计算机在理解上有很多难点,所以 NLU 至今还远不如人类的表现。

自然语言生成 NLG

自然语言生成系统可以说是一种将资料转换成自然语言表述的翻译器。不过产生最终语言的方法不同于编译程式,因为自然语言多样的表达。

自然语言生成可以视为自然语言理解的反向:自然语言理解系统需要理清输入句的意思,从而产生机器表述语言;自然语言生成系统需要决定如何把概念转化成语言。自然语言生成典型的 6 大步骤是:

  1. 决定内容:决定在文本里置入哪些资讯。用上一节花粉预报软件为例,是否要明确提到东南部花粉级数为7。
  2. 架构文件:所传达资讯的整体组织。例如决定先描述高花粉量地区,再提及低花粉量地区。
  3. 聚集语句:合并类似的句子,让文本更可读、更自然。例如合并下两个句子“星期五花粉等级已从昨天的中级到今天的高级”和“全国大部分地区的花粉等级在6到7”成为“星期五花粉等级已从昨天的中级到今天的高级,全国大部分地区的数值在6到7。”
  4. 选择字词:选用表达概念的文字。例如决定要用“中等”还是“中级”。
  5. 指涉语生成:产生能辨认物体或地区的指涉语。例如用“北方岛屿和苏格兰东北角”指涉苏格兰的某个地区。这个任务也包括决定代名词以及其它的照应语。
  6. 实现文本:根据句法学、构词学、正写法的规则产生实际的文本。

算法模型

近期来,AIGC 的飞速发展主要归功于算法领域的技术积累,其中包含:生成对抗模型(GAN)、变微分自动编码器(VAE)、标准化流模型(NFs)、自回归模型(AR)、能量模型和扩散模型(Diffusion Model)。其中生成对抗模型和扩散模型是两个非常常用的模型。

其中 GAN 模型在上次的内容里,已经有提及,这里就不再做介绍。有兴趣的小伙伴可以看下《从 AI 绘画到 ChatGPT,聊聊生成式 AI》这篇内容。

今天主要说下扩散模型。

扩散模型是一种新型的生成模型,可生成各种高分辨率图像。扩散模型可以应用于各种任务,如图像去噪、图像修复、超分辨率成像、图像生成等等。

扩散模型一般分为正向扩散和反向扩散。正向扩散中,图像逐渐被噪声污染,直到图像成为完全噪声。

在反向扩散中,则是利用马尔科夫链逐步去除预测噪声,最终恢复成图像。

AIGC的应用场景及发展趋势

随着 AIGC 技术的发展,其适用面将会逐渐扩大。现在 AIGC 已经被广泛应用在文字、图像、音频、游戏和代码生成等场景。

  • 文字创作:AIGC 主要被应用于新闻的撰写,台本的撰写等等,近期有爆料说综艺《毛血旺》也开始尝试使用 ChatGPT 撰写台本。
  • 图片创作:现在市场上已经有很多 AI 作图的应用,用户只需要输入文字描述,计算机就会自动生成一张作品。
  • 视频创作:Google 推出了 AI 视频生成模型 Phenaki,它能够根据文本内容生成视频。现在市面上也有不少相关的文字生成视频的产品。
  • 音频创作:“AI 孙燕姿”已经大火,虽然还没有创作相关的展现,但已经能够看到 AIGC 在音频创作上的应用。
  • 游戏开发:当下,已经有一些游戏公司将 AI 相关技术应用于游戏中的 NPC、场景建模、原画绘制等方面,丰富游戏细节,包括NPC的一些微表情,大场景下的天气变化等细节处理,大大提供玩家游戏的沉浸感。

当下,AIGC 主要辅助人们来进行内容生产,我相信随着技术的发展,AIGC 会介入更多的内容生产,逐渐在与人类共创作的过程中占据更多比例。甚至在未来,AIGC 可能会颠覆现有的内容生产模式,独立完成内容创作,为 Web 3.0 时代带来更多的内容生产力。

标签:AI,模型,AIGC,生成,Web3,内容,聊聊,自然语言
From: https://www.cnblogs.com/upyun/p/17596659.html

相关文章

  • Mac部署AIGC图片生成服务——基于stable-diffusion
    Mac部署AIGC图片生成服务——基于stable-diffusionAIGC即人工智能内容生成,是目前非常火的一个概念。随着各种大模型的问世,通过AI来生成内容的能已经越来越强大。本文将从应用实践方面进行介绍如何在自己的PC电脑上部署一个强大的AI图片生成服务。关于AI绘图,我相信你一定不太陌生,......
  • C++ 算法进阶系列之再聊聊动态规划的两把刷子
    1.前言递归和动态规划是算法界的两个扛把子,想进入算法之门,则必须理解、掌握这两种算法的本质。一旦参悟透这2种算法的精髓,再加上对树、图等复杂数据结构的深入理解,可以解决大部分的算法问题。本文通过几个典型案例,再次聊聊动态规划算法。其实动态规划算法也就2把刷子。找到......
  • AIGC与NLP大模型实战-经典CV与NLP大模型及其下游应用任务实现
    点击下载:AIGC与NLP大模型实战-经典CV与NLP大模型及其下游应用任务实现提取码:hqq8当今社会是科技的社会,是算力快速发展的时代。随着数据中心、东数西算、高性能计算、数据分析、数据挖掘的快速发展,大模型得到了快速地发展。大模型是“大算力+强算法”相结合的产物,是人工智能的发展......
  • ChatGPT狂飙240天,欢迎来到AIGC时代!
    2023年的互联网,针对GPT的讨论已经蔚然成风,相关话题热度如火箭一般蹿升。生成式预训练模型(GenerativePre-trainedTransformer,简称GPT)是人工智能AI子领域自然语言处理中的一个重要技术,由OpenAI团队开发。GPT是一种基于互联网的、可用数据来训练的、文本生成的深度学习模型,并在不同......
  • 加码AIGC,是银联商务的机会还是“鸡肋”?
    文|新熔财经作者|石榴去年年底,ChatGPT的横空出世,一举引爆了新一轮人工智能浪潮,也让AIGC成为了2023年科技创新领域里,不折不扣的“紫微星”。现如今,各行各业都开始探索AIGC能给行业带来哪些颠覆,以智力资本为主要生产要素的金融行业正是其中的先行者。毕竟,金融行业主体众多,如银行、基......
  • 聊聊List、Set、Map
    1.List哪些实现类JavaList一共三个实现类分别是ArrayList、Vector和LinkedList。(1)ArrayList是最常见用的List实现类,内部是通过数组实现的,它允许对元素进行快速随机访问。数组的缺点是每个元素之间不能有间隔,当数组大小不满足时需要增加存储能力,就要将已有数组的数据复制到......
  • AIGC,你看我还有机会吗?| 融云前沿
    2022年底,以ChatGPT为代表的“生成式AI”正式开启了AI行业爆点不断的热闹时刻。关注【融云全球互联网通信云】了解更多傅盛和朱啸虎关于大模型是否还有机会的隔空激辩余热未散,Meta就宣布开源商用模型,企图通过做大模型时代的开源标准来应对OpenAI构建的技术围墙。行业火热异......
  • 聊聊日志聚类算法及其应用场景
    阅读《基于FlinkML搭建的智能运维算法服务及应用》一文后,对其中日志聚类算法有了些思考。概述日志聚类,简而言之是对海量日志的分析;其分析处理链路可以分为如下流程:日志采集->预处理->分词和特征表示->聚类和标注。算法模型分析针对如上的链路流程做一个拆分叙述。日......
  • 聊聊你们关心的视频号
    阅读本文大概需要2.8分钟。最近很多朋友和读者都问起视频号,那么作为微信视频号第一批受邀开通作者,我想,多少有点话语权给大家聊聊这个话题。1. 啥是视频号呢?还记得今年1月份微信公开课龙哥录制的那个视频么?视频里龙哥说,不是所有人都有能力开个公众号,写长文内容的,但是每个人都有......
  • AIGC 之 Stable Diffusion 生成的带文字图片示例
    文字文字为HOTAIGC网址导航效果图片1图片2图片3图片4图片5图片6图片7图片8大家觉得效果如何,要是大家感兴趣下篇分享生成原理及参数。......