A - Chord
#include <bits/stdc++.h>
using namespace std;
int32_t main() {
ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
string s;
cin >> s;
if( s == "ACE" ) cout << "Yes\n";
else if( s == "BDF" ) cout << "Yes\n";
else if( s == "CEG" ) cout << "Yes\n";
else if( s == "DFA" ) cout << "Yes\n";
else if( s == "EGB" ) cout << "Yes\n";
else if( s == "FAC" ) cout << "Yes\n";
else if( s == "GBD" ) cout << "Yes\n";
else cout << "No\n";
return 0;
}
B - TaK Code
枚举左上角
#include <bits/stdc++.h>
using namespace std;
int32_t main() {
ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
int n, m;
cin >> n >> m;
vector<string> g(n);
for (auto &i: g)
cin >> i;
for (int i = 0; i + 8 < n; i++)
for (int j = 0; j + 8 < m; j++) {
int f = 1;
for (int l = i; f && l <= i + 2; l++)
for (int k = j; f && k <= j + 2; k++)
if (g[l][k] != '#') f = 0;
for (int l = i + 6; f && l <= i + 8; l++)
for (int k = j + 6; f && k <= j + 8; k++)
if (g[l][k] != '#') f = 0;
for (int l = i; f && l <= i + 3; l++)
if (g[l][j + 3] != '.') f = 0;
for (int k = j; f && k <= j + 3; k++)
if (g[i + 3][k] != '.') f = 0;
for (int l = i + 5; f && l <= i + 8; l++)
if (g[l][j + 5] != '.') f = 0;
for (int k = j + 5; f && k <= j + 8; k++)
if (g[i + 5][k] != '.') f = 0;
if (f == 0) continue;
cout << i + 1 << " " << j + 1 << "\n";
}
return 0;
}
C - Invisible Hand
枚举答案\(x\),设\(a\)为\(A_i\)中小于等于\(x\)的数量,设\(b\)为\(B_i\)中大于等于\(x\)的数量,则随着\(x\)递增,\(a\)递增,\(b\)递减。所以\(b-a\)递减,所以可以二分找到最小的\(x\)满足\(b-a=0\)。在计算\(a,b\)的时候也可直接二分。
#include <bits/stdc++.h>
using namespace std;
#define int long long
int32_t main() {
ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
int n, m;
cin >> n >> m;
vector<int> a(n), b(m);
for (auto &i: a)
cin >> i;
for (auto &i: b)
cin >> i;
sort(a.begin(), a.end());
sort(b.begin(), b.end());
auto f = [a, b](int x) {
int A = lower_bound(a.begin(), a.end(), x) - a.begin();
while (a[A] == x) A++;
int B = lower_bound(b.begin(), b.end(), x) - b.begin();
B = b.size() - B;
return B - A;
};
int l = 0, r = 2e9, res, mid;
while (l <= r) {
mid = (l + r) >> 1;
if (f(mid) <= 0) res = mid ,r = mid - 1;
else l = mid + 1;
}
cout << res << "\n";
return 0;
}
再来分析,可以发现答案一定是\(A_i,B_i+1\),所以把\(A,B+1\)放到数组\(C\)中排序,当\(x=0\)时\(b-a=M\),当\(x=C_1\)时,\(b-a=M-1\)以此类推当\(x=C_M\)时\(b-a=0\)。所以第\(M\)小就是答案。
这里只求第\(M\)小,可以只用nth_element
就可以\(O(N)\)求解
#include<bits/stdc++.h>
using namespace std;
int32_t main() {
int n , m;
cin >> n >> m;
vector<int> a(n+m);
for( int i = 0 ; i < n ; i ++ ) cin >> a[i];
for( int i = n ; i < n+m ; i ++ ) cin >> a[i] , a[i] ++;
nth_element( a.begin() , a.begin() + m - 1 , a.end());
cout << a[m-1];
return 0;
}
D - Count Bracket Sequences
简单 dp,f[i][j]
表示前\(i\)个字符,且\(j\)个左括号尚未匹配的方案数
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 3005;
const int mod = 998244353;
int f[N][N];
int32_t main() {
ios::sync_with_stdio(false), cin.tie(nullptr);
string s;
cin >> s;
int n = s.size();
f[0][0] = 1;
for( int i = 1 ; i <= n ; i ++ ){
if( s[i-1] == '(' ){
for( int j = 1 ; j <= n ; j ++ )
f[i][j] = f[i-1][j-1];
}else if( s[i-1] == ')' ){
for( int j = 0 ; j < n ; j ++ )
f[i][j] = f[i-1][j+1];
}else {
for( int j = 0 ; j <= n ; j ++ ){
if( j-1 >= 0 ) f[i][j] += f[i-1][j-1];
if( j+1 <= n ) f[i][j] += f[i-1][j+1];
f[i][j] %= mod;
}
}
}
cout << f[n][0] << "\n";
return 0;
}
E - Tangency of Cuboids
因为长方体不会相交,所以我们暴力的标记每个立方体属于哪一个长方体,我们用每个立方体左上角的坐标表示该立方体。
如果两个长方体相邻,这会有两个相邻的立方体属于两个不同长方体。所以可以直接枚举立方体。
#include<bits/stdc++.h>
using namespace std;
const int N = 115;
int g[N][N][N];
int32_t main() {
int n;
cin >> n;
for (int t = 1, a, b, c, x, y, z; t <= n; t++) {
cin >> a >> b >> c >> x >> y >> z;
for ( int i = a ; i < x; i++)
for ( int j = b ; j < y; j++)
for ( int k = c ; k < z; k++)
g[i][j][k] = t;
}
vector ans( n+1 , set<int>() );
for (int i = 0; i < 100; i++)
for (int j = 0; j < 100; j++)
for (int k = 0; k < 100; k++) {
if (g[i][j][k] == 0) continue;
if (g[i + 1][j][k] != 0 && g[i][j][k] != g[i + 1][j][k])
ans[g[i][j][k]].emplace(g[i + 1][j][k]), ans[g[i + 1][j][k]].emplace(g[i][j][k]);
if (g[i][j + 1][k] != 0 && g[i][j][k] != g[i][j + 1][k])
ans[g[i][j][k]].emplace(g[i][j + 1][k]), ans[g[i][j + 1][k]].emplace(g[i][j][k]);
if (g[i][j][k + 1] != 0 && g[i][j][k] != g[i][j][k + 1])
ans[g[i][j][k]].emplace(g[i][j][k + 1]), ans[g[i][j][k + 1]].emplace(g[i][j][k]);
}
for (int i = 1; i <= n; i++)
cout << ans[i].size() << "\n";
return 0;
}
F - Cans and Openers
我们可以枚举选择多少个易拉罐,然后可以用二分的方式求出最多可以获得多少个普通罐。
对于易拉罐、普通罐、开罐器我们都可以贪心的选择,所以可以排序求前缀和。
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 3005;
const int mod = 998244353;
int f[N][N];
int32_t main() {
ios::sync_with_stdio(false), cin.tie(nullptr);
int n, m, res = 0;
cin >> n >> m;
vector<int> a, b, c;
a.push_back(0), b.push_back(0), c.push_back(0);
for (int i = 1, t, x; i <= n; i++) {
cin >> t >> x;
if (t == 0) a.push_back(x);
else if (t == 1) b.push_back(x);
else c.push_back(x);
}
int A = a.size() - 1, B = b.size() - 1, C = c.size() - 1;
sort(a.begin() + 1, a.end(), greater<int>());
for (int i = 1; i <= A; i++) a[i] += a[i - 1];
sort(b.begin() + 1, b.end(), greater<int>());
for (int i = 1; i <= B; i++) b[i] += b[i - 1];
sort(c.begin() + 1, c.end(), greater<int>());
for (int i = 1; i <= C; i++) c[i] += c[i - 1];
for (int i = 0, l, r, cnt, mid; i <= min(m, A); i++) {
l = 0, r = min(B, m - i), cnt = 0;
while (l <= r) {
mid = (l + r) >> 1;
if (c[min(C, m - i - mid)] >= mid) cnt = mid, l = mid + 1;
else r = mid - 1;
}
res = max(res, a[i] + b[cnt]);
}
cout << res << "\n";
return 0;
}
G - Avoid Straight Line
首先不管题目要求,任意选三个\(C_n^2\),然后减去三个点在一条链上的情况。
我们枚举中间点,考虑两个端点只有两种情况
- 一个点子树中的节点,另一个不是
- 两个点都是子树中的,且属于不同的子树
这样简单的分类讨论一下就可以了。
#include <bits/stdc++.h>
using namespace std;
#define int long long
vector<vector<int>> e, g;
vector<int> f;
void dfs(int x) {
f[x] = 1;
for (auto y: e[x]) {
if (f[y]) continue;
g[x].push_back(y);
dfs(y);
f[x] += f[y];
}
return;
}
int32_t main() {
ios::sync_with_stdio(false), cin.tie(nullptr);
int n;
cin >> n;
e.resize(n + 1), g.resize(n + 1);
for (int i = 1, x, y; i < n; i++)
cin >> x >> y, e[x].push_back(y), e[y].push_back(x);
f.resize(n + 1);
dfs(1);
int res = n * (n - 1) * (n - 2) / 6;
// f[i]i i的子树大小, cnt 中间包含 i的链的数量
for (int i = 1 , cnt ; i <= n; i++){
cnt = 0;
for( auto j : g[i] ) // 两个点在不同的子树中
cnt += f[j] * ( f[i] - 1 - f[j] );
cnt /= 2;
cnt += ( f[i] - 1 ) * ( n - f[i] );
res -= cnt;
}
cout << res;
return 0;
}
标签:AtCoder,Beginner,int,312,nullptr,cin,back,++,tie
From: https://www.cnblogs.com/PHarr/p/17594330.html