首页 > 其他分享 >AcWing 4798. 打怪兽题解

AcWing 4798. 打怪兽题解

时间:2023-07-30 23:11:32浏览次数:35  
标签:怪兽 int 题解 复杂度 4798 res include AcWing

可以从 \(1\) 枚举到 \(n\) 表示要打多少个怪兽。

因为你要打 \(t\) 个怪兽,并不管顺序,所以我们可以对 \([1, t]\) 这一段进行排序,然后计算 \(a[t], a[t - 2], a[t - 4], \dots\) 即可(因为你要干掉第 \(t\) 个怪兽的时候,必须要使用 \(a[t]\) 的法力值,因为排过序,所以连着 \(t - 1\) 一起干掉就可以了,对于编号小于 \(t\) 的也可以这么干)。

注意每一次都进行快速排序反而会更慢,我们采用插入排序,每次插入新来的数字即可,插入的时间复杂度: \(O(n)\)。

总时间复杂度:\(O(n^2)\)。

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1010;

int n, m;
int a[N];

bool check(int k) {
    a[0] = -0x3f3f3f3f;
    int p = k;
    while (a[p] < a[p - 1]) {
        swap(a[p], a[p - 1]);
        p--;
    }
    int res = 0;
    for (int i = k; i >= 1; i -= 2) res += a[i];
    if (res <= m) return true;
    else return false;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    cin >> n >> m;
    for (int i = 1; i <= n; i++) cin >> a[i];
    
    for (int i = 1; i <= n; i++) {
        if (!check(i)) {
            cout << i - 1 << '\n';
            return 0;
        }
    }
    cout << n << '\n';
    return 0;
}

标签:怪兽,int,题解,复杂度,4798,res,include,AcWing
From: https://www.cnblogs.com/Yuan-Jiawei/p/17592303.html

相关文章

  • 【题解】[ABC312E] Tangency of Cuboids(adhoc)
    【题解】[ABC312E]TangencyofCuboids少见的at评分\(2000+\)的ABCE题,非常巧妙的一道题。特别鸣谢:@dbxxx给我讲解了他的完整思路。题目链接ABC312E-TangencyofCuboids题意概述给定三维空间中的\(n\)个长方体,每个长方体以其一条体对角线的两个端点的坐标形式......
  • 0730小马拉松 题解
    T358782阶乘数学。测试点\(1\sim3\):longlong暴力阶乘。预期30分。测试点\(4\sim5\):暴力试除,找出因子\(5\)的个数。预期50分。测试点\(6\sim7\):考虑这样一个程序:while(x)x/=5,cnt+=x;即求出有多少个数是\(5\)的倍数,\(25\)的倍数,\(125\)的倍数......加起来......
  • P3375 【模板】KMP 字符串匹配 题解
    前言狗屁不是,建议别看!!! 题目链接P3375【模板】KMP字符串匹配-洛谷|计算机科学教育新生态(luogu.com.cn) 分析先给个例子s1:ABCABCABBs2:ABCABB若使用朴素算法匹配,当匹配到s1:ABCABCABBs2:ABCABB时,朴素算法会跳出,然后匹配下一位。最终匹配到s1:ABCABCABBs2:......
  • 洛谷 P9489 ZHY 的表示法 题解
    Description给定\(\{x_n\}\),\(y\)为任意实数,求出在\([l,r]\)内\(\displaystyle\sum_{i=1}^{n}\lfloor\dfrac{y}{x_i}\rfloor\)有多少种取值。link:https://www.luogu.com.cn/problem/P9489Solution可以表示出的取值一定能被为某个\(x_i\)的倍数的\(y\)表示出。根据......
  • [ABC312] 题解 [D~Ex]
    [ABC312]题解[D~Ex]D-CountBracketSequences一个括号序列\(s\)包含(,),?,?可以填任意括号,问你填完后有多少种合法序列方式。这是一个Classical的括号序列DP,使用这个状态表示可以解决很多括号序列问题:\(dp[i][j]\)表示已经摆好了前\(i\)个字符,有\(j\)个没......
  • BZOJ 4321 queue2 题解
    在硬盘里翻到了当时没推完的这个题,今天补完了最后几步。题目链接:https://hydro.ac/d/bzoj/p/4321对任意相邻两个元素差的绝对值不为\(1\)的\(n\)阶排列计数。\(\mathcal{O}(n^2)\)做法是考虑按照值域由小到大逐步插入,记录\(f_{i,j}\)为长度为\(i\)的排列,一共有\(j\)......
  • bitwarden 私有化部署android无法登陆问题解决
    安卓版bitwarden安装使用中登陆提示“发生错误。Exceptionmessage:java.security.cert.CertPathValidatorException:Trustanchorforcertificationpathnotfound.”这个错误是因为Bitwarden的证书文件中缺少中间证书导致安卓系统的证书校验异常解决方式,生成带证书链的证......
  • CF1855B Longest Divisors Interval 题解
    原题链接:https://codeforces.com/contest/1855/problem/B题意:给定一个正整数n,找到满足该条件的区间[l,r]的长度的最大值:对于任意l<=i<=r,n均为i的倍数(多组数据)。思路:如果n是奇数,答案显然是1,因为任意两个连续的正整数一定会有一个2的倍数。将这一结论进行推广:......
  • Codeforces Round 889 (Div. 2) 题解
    \(6\)题只做出来\(1\)题,损失惨重A.DaltontheTeacher显然,答案一定和最初的不满意人数有关,所以输入的时候统计一下然后,将不满意的人的座位每两个人交换一次即可,交换次数就是答案如果不满意人数是奇数,那么答案还要加\(1\)时间复杂度\(O(n)\)(输入的复杂度)B.LongestD......
  • 【题解】[ABC312G] Avoid Straight Line(容斥,树上统计,dfs)
    【题解】[ABC312G]AvoidStraightLine题目链接[ABC312G]AvoidStraightLine题意概述给定一棵\(n\)个节点的树,第\(i\)条边连接节点\(a_i\)和\(b_i\),要求找到满足以下条件的三元整数组\((i,j,k)\)的数量:\(1\lei<j<k\len\);对于树上任意一条简单路径,都不同时经......