首页 > 其他分享 >DETR

DETR

时间:2023-07-29 20:23:00浏览次数:39  
标签:tgt self torch mask pos boxes DETR

目录

相较于传统目标检测,DETR是一种纯端到端的网络。它不再需要NMS(非极大值抑制,用于去除多余的预测框)和生成anchor。首先,使用一个CNN抽取图片的特征,将这个特征拉平并加入位置编码信息;其次,将拉平后的特征送入Transformer的encoder学全局特征;然后,由decoder调整object query生成100个预测框;最后,利用二分图匹配的方式将Ground Truth与预测结果进行匹配,对于匹配成功的框才会进一步计算loss(没有匹配成功的框将会被标记为背景)。

网络框架:

1. 用卷积神经网络抽特征

(1)按数据、标签取数据

class ConvertCocoPolysToMask(object):
    def __init__(self, return_masks=False):
        self.return_masks = return_masks

    def __call__(self, image, target):
        w, h = image.size#480*640

        image_id = target["image_id"]
        image_id = torch.tensor([image_id])#转换成tensor格式

        anno = target["annotations"]#拿到标注数据

        anno = [obj for obj in anno if 'iscrowd' not in obj or obj['iscrowd'] == 0]#只保留iscrowd == 0,就是单个目标没有重叠的

        boxes = [obj["bbox"] for obj in anno]#bbox的格式是x y w h
        # guard against no boxes via resizing
        boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
        boxes[:, 2:] += boxes[:, :2]
        boxes[:, 0::2].clamp_(min=0, max=w)
        boxes[:, 1::2].clamp_(min=0, max=h)
        #x y w h转换成x1y1 x2y2
        classes = [obj["category_id"] for obj in anno]#当前每个框对应的类别
        classes = torch.tensor(classes, dtype=torch.int64)#转换成tensor格式

        if self.return_masks:#检测任务中不用msak
            segmentations = [obj["segmentation"] for obj in anno]
            masks = convert_coco_poly_to_mask(segmentations, h, w)

        keypoints = None#该任务不涉及自带估计的内容,不执行
        if anno and "keypoints" in anno[0]:
            keypoints = [obj["keypoints"] for obj in anno]
            keypoints = torch.as_tensor(keypoints, dtype=torch.float32)
            num_keypoints = keypoints.shape[0]
            if num_keypoints:
                keypoints = keypoints.view(num_keypoints, -1, 3)

        keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])#过滤掉如左上角小于右下角的(注意自己标注数据的时候可能出现的)
        boxes = boxes[keep]
        classes = classes[keep]
        if self.return_masks:
            masks = masks[keep]
        if keypoints is not None:
            keypoints = keypoints[keep]

        target = {}#返回合适的值
        target["boxes"] = boxes
        target["labels"] = classes
        if self.return_masks:
            target["masks"] = masks
        target["image_id"] = image_id
        if keypoints is not None:
            target["keypoints"] = keypoints

        # for conversion to coco api
        area = torch.tensor([obj["area"] for obj in anno])
        iscrowd = torch.tensor([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in anno])
        target["area"] = area[keep]
        target["iscrowd"] = iscrowd[keep]

        target["orig_size"] = torch.as_tensor([int(h), int(w)])
        target["size"] = torch.as_tensor([int(h), int(w)])

        return image, target#返回做好的数据和标签

def __getitem__(self, idx):
    img, target = super(CocoDetection, self).__getitem__(idx)#读入数据和标签
    image_id = self.ids[idx]
    target = {'image_id': image_id, 'annotations': target}#标签包括ID和标注数据
    img, target = self.prepare(img, target)#图像预处理
    if self._transforms is not None:
        img, target = self._transforms(img, target)#数据增强115行
    return img, target

(2)把数据做成序列

class PositionEmbeddingSine(nn.Module):#复现论文用正余弦编码位置
    """
    This is a more standard version of the position embedding, very similar to the one
    used by the Attention is all you need paper, generalized to work on images.
    """
    def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
        super().__init__()
        self.num_pos_feats = num_pos_feats
        self.temperature = temperature
        self.normalize = normalize
        if scale is not None and normalize is False:
            raise ValueError("normalize should be True if scale is passed")
        if scale is None:
            scale = 2 * math.pi
        self.scale = scale

    def forward(self, tensor_list: NestedTensor):
        x = tensor_list.tensors
        print(x.shape)#2*2048*26*25,batch,每个点的序列特征,H,W
        mask = tensor_list.mask
        print(mask.shape)#2*26*25每个位置是实际特征还是padding出来的,true表示实际的特征,false表示加的padding
        assert mask is not None
        not_mask = ~mask
        y_embed = not_mask.cumsum(1, dtype=torch.float32)#行方向累加,最后一个值最大,便于做归一化。行方向列方向对应的ID转换为归一化后的结果
        x_embed = not_mask.cumsum(2, dtype=torch.float32)#列方向累加
        if self.normalize:
            eps = 1e-6#防止分母为0
            y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale#归一化
            x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale#scale= 2 * math.pi,映射到角度中便于后续这正余弦

        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)#映射成128维向量,arange表示映射奇数/偶数维度
        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)#执行三角函数公式
        print(dim_t.shape)#128
        pos_x = x_embed[:, :, :, None] / dim_t#拿到行embedding完的结果
        pos_y = y_embed[:, :, :, None] / dim_t#拿到列embedding完的结果
        pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)#行执行三角函数公式
        pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)#列执行三角函数公式
        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)#拼接行列结果
        return pos

class Joiner(nn.Sequential):
    def __init__(self, backbone, position_embedding):
        super().__init__(backbone, position_embedding)

    def forward(self, tensor_list: NestedTensor):
        print(tensor_list.tensors.shape)
        xs = self[0](tensor_list)#把输入数据经过resnet得到特征图
        out: List[NestedTensor] = []
        pos = []
        for name, x in xs.items():
            out.append(x)
            # position encoding
            pos.append(self[1](x).to(x.tensors.dtype))

        return out, pos

(3)拉平特征

    def forward(self, src, mask, query_embed, pos_embed):
        # flatten NxCxHxW to HWxNxC
        bs, c, h, w = src.shape
        src = src.flatten(2).permute(2, 0, 1)#拉长最后一层的特征图并reshape
        print(src.shape)#650,2,256----26*25=650个点,每个点是256维向量
        pos_embed = pos_embed.flatten(2).permute(2, 0, 1)#拉长pos_embed并reshape
        print(src.shape)#650,2,256----26*25=650个点,每个点是256维向量
        query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)#decoder的时候用,如何找合适的100个向量
        print(src.shape)#100,2,256
        mask = mask.flatten(1)
        print(src.shape)#2,650
        tgt = torch.zeros_like(query_embed)#decoder的时候用,
        print(src.shape)#100,2,256
        memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)#传入序列,序列中哪些位置不需要算attention,位置编码
        print(memory.shape)
        hs = self.decoder(tgt, memory, memory_key_padding_mask=mask,
                          pos=pos_embed, query_pos=query_embed)
        print(hs.transpose(1,2).shape)#6,2,100,256---decoder6次
        print(memory.permute(1,2,0).view(bs,c,h,w).shape)#2,256,26,25
        return hs.transpose(1, 2), memory.permute(1, 2, 0).view(bs, c, h, w)

2. 用Transformer Encoder去学全局特征

  • 利用backbone做好的序列特征传入Encoder,自注意力机制在特征图上进行全局分析
    def forward_post(self,
                     src,
                     src_mask: Optional[Tensor] = None,
                     src_key_padding_mask: Optional[Tensor] = None,
                     pos: Optional[Tensor] = None):
        q = k = self.with_pos_embed(src, pos)#只有K和Q加入了位置编码,并没有对V做,V只考虑提供了什么信息
        print(q.shape)#650,2,256
        src2 = self.self_attn(q, k, value=src, attn_mask=src_mask,#传入q,k,特征图,attn_mask都是None,key_padding_mask表示序列当中哪些位置不需要计算attention,[0]表示只要特征图不要权重项
                              key_padding_mask=src_key_padding_mask)[0]#两个返回值,自注意力层的输出,自注意力权重,只需要第一个
        print(src2.shape)#650,2,256
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
        print(src2.shape)#650,2,256
        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src

3. 用Transformer Decoder调整object query生成100个预测框

  • query先自己做attention把向量做的更好,再用100个q在encoder中做好的k,v中去查图片的每个点是不是包含物体。
    def forward_post(self, tgt, memory,
                     tgt_mask: Optional[Tensor] = None,
                     memory_mask: Optional[Tensor] = None,
                     tgt_key_padding_mask: Optional[Tensor] = None,
                     memory_key_padding_mask: Optional[Tensor] = None,
                     pos: Optional[Tensor] = None,
                     query_pos: Optional[Tensor] = None):
        q = k = self.with_pos_embed(tgt, query_pos)#刚开始q为0,没进行学习,经过self-attention和attention(与encoder的)后有值
        print(q.shape)#100,2,256
        tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
                              key_padding_mask=tgt_key_padding_mask)[0]#和encoder不同,自己做attention把向量做的更好
        print(tgt2.shape)#100,2,256
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)
        print(memory.shape)#650,2,256
        tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),#decoder自己做好的query
                                   key=self.with_pos_embed(memory, pos),#key用encoder编好的memory
                                   value=memory, attn_mask=memory_mask,#value用encoder编好的memory
                                   key_padding_mask=memory_key_padding_mask)[0]
        print(q.shape)#100,2,256
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout3(tgt2)
        tgt = self.norm3(tgt)
        print(tgt.shape)#100,2,256--100个query,每个对应256维向量
        return tgt

4. 二分图匹配和损失函数

  • 分类损失,回归损失,框大小的损失
class HungarianMatcher(nn.Module):
    #This class computes an assignment between the targets and the predictions of the network
    def __init__(self, cost_class: float = 1, cost_bbox: float = 1, cost_giou: float = 1):
        """Creates the matcher
        super().__init__()
        self.cost_class = cost_class
        self.cost_bbox = cost_bbox
        self.cost_giou = cost_giou
        assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, "all costs cant be 0"

    @torch.no_grad()
    def forward(self, outputs, targets):
        """ Performs the matching
 len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
        """
        bs, num_queries = outputs["pred_logits"].shape[:2]#batch为2,每个数据100个框

        # We flatten to compute the cost matrices in a batch
        out_prob = outputs["pred_logits"].flatten(0, 1).softmax(-1)  #预测的分类结果[batch_size * num_queries, num_classes]
        out_bbox = outputs["pred_boxes"].flatten(0, 1)  # 预测的回归的结果[batch_size * num_queries, 4]

        # Also concat the target labels and boxes
        tgt_ids = torch.cat([v["labels"] for v in targets])#取标签的ID
        tgt_bbox = torch.cat([v["boxes"] for v in targets])#取标签的BBOX

        # Compute the classification cost. Contrary to the loss, we don't use the NLL,
        # but approximate it in 1 - proba[target class].
        # The 1 is a constant that doesn't change the matching, it can be ommitted.
        cost_class = -out_prob[:, tgt_ids]

        # Compute the L1 cost between boxes
        cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1)

        # Compute the giou cost betwen boxes
        cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox), box_cxcywh_to_xyxy(tgt_bbox))#计算框的大小比例是否合适

        # Final cost matrix分类损失,回归损失,框大小的损失,分配权重项
        C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou
        C = C.view(bs, num_queries, -1).cpu()

        sizes = [len(v["boxes"]) for v in targets]
        indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))]
        return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
    def forward(self, outputs, targets):
        """ This performs the loss computation.
        Parameters:
             outputs: dict of tensors, see the output specification of the model for the format
             targets: list of dicts, such that len(targets) == batch_size.
                      The expected keys in each dict depends on the losses applied, see each loss' doc
        """
        outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'}

        # Retrieve the matching between the outputs of the last layer and the targets
        indices = self.matcher(outputs_without_aux, targets)#算索引的对应,计算哪些是实际的物体并与框一一对应,100个框除了物体的框,其余做背景

        # Compute the average number of target boxes accross all nodes, for normalization purposes
        num_boxes = sum(len(t["labels"]) for t in targets)
        num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
        if is_dist_avail_and_initialized():
            torch.distributed.all_reduce(num_boxes)
        num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item()

        # Compute all the requested losses分类损失,回归损失,框大小的损失
        losses = {}
        for loss in self.losses:
            losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))

        # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
        if 'aux_outputs' in outputs:
            for i, aux_outputs in enumerate(outputs['aux_outputs']):
                indices = self.matcher(aux_outputs, targets)
                for loss in self.losses:
                    if loss == 'masks':
                        # Intermediate masks losses are too costly to compute, we ignore them.
                        continue
                    kwargs = {}
                    if loss == 'labels':
                        # Logging is enabled only for the last layer
                        kwargs = {'log': False}
                    l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs)
                    l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
                    losses.update(l_dict)

        return losses

标签:tgt,self,torch,mask,pos,boxes,DETR
From: https://www.cnblogs.com/lushuang55/p/17589947.html

相关文章

  • detrex | 面向detr系列的目标检测开源框架
    DETR作为Transformer应用于目标检测领域的开山之作,后续有大量的算法都是在其基础上改进而来,如Deformable-DETR,DAB-DETR,DN-DETR,DINO等。这些模型尽管都是采用DETR的基本架构,但其改进创新却各有千秋,能否有一个框架将这些算法融合在一起方便我们使用呢?CVR团队分别开源了DAB-DETR,DN-D......
  • 加速44%!RT-DETR量化无损压缩优秀实战
    RT-DETR模型是飞表目标检测套件PaddleDetection最新发布的SOTA目标检测模型。它是一种基于DETR架构的端到端目标检测器,在速度和精度上均取了SOTA性能。在现实部署中,为了追求“更准、更小、更快”的效率,本文使用飞模模型压缩工具PaddleSlim中的自动压缩工具(ACT,AutoCompressionTo......
  • 超越YOLOv8,飞桨推出精度最高的实时检测器RT-DETR!
    众所周知,实时目标检测(Real-TimeObjectDetection)一直由YOLO系列模型主导。飞桨在去年3月份推出了高精度通用目标检测模型PP-YOLOE,同年在PP-YOLOE的基础上提出了PP-YOLOE+。后者在训练收敛速度、下游任务泛化能力以及高性能部署能力方面均达到了很好的效果。而继PP-......
  • YOLO超快时代终结了 | RT-DETR用114FPS实现54.8AP,远超YOLOv8
    前言 本文首先分析了现代实时目标检测器中NMS对推理速度的影响,并建立了端到端的速度基准。为了避免NMS引起的推理延迟,作者提出了一种实时检测Transformer(RT-DETR),这是第一个实时端到端目标检测器。具体而言,设计了一种高效的混合编码器,通过解耦尺度内交互和跨尺度融合来高效处理多......
  • gitee github 左侧栏树形显示插件 Octotree codetree 浏览器插件
    起因看到一位仁兄用gitee做仓库https://gitee.com/zhengqingya/java-developer-document然后左侧栏挺方便(抖音视频)下载chrome扩展市场搜octotree用于githubcodetree用于gitee双核浏览器扩展市场搜octotree用于githubgitcodetree用于gitee......
  • DINO-DETR论文学习记录
    摘要我们介绍了DINO(带有改进的去噪器box的DETR),一种最先进的端到端对象检测器。DINO通过使用对比方式进行去噪训练、混合查询选择方法进行锚点初始化以及用于框预测的ookfo......
  • DETR源码学习(一)之网络模型构建
    这篇文章主要为记录DETR模型的构建过程首先明确DETR模型的搭建顺序:首先是backbone的搭建,使用的是resnet50,随后是Transformer模型的构建,包含编码器的构建与解码器的构建,完......
  • DINO-DETR 实验与分析
    前言自DETR提出之后,不计其数的DETR改进模型不断被提出,尽管如此,基于Transformer模型的速度与精度却一直被人诟病。今天学习的这个DETR的改进模型,号称SOTA模型,这便是大名鼎鼎......
  • 去趋势函数 detrend
     matlab去趋势例程clcclearallcloseall%创建一个模拟数据集并计算其平均值。t=0:300;dailyFluct=gallery('normaldata',size(t),2);sdata=cumsum(dai......
  • SPARSE DETR:具有可学习稀疏性的高效端到端目标检测(源代码下载)
    公众号ID|ComputerVisionGzq学习群|扫码在主页获取加入方式论文链接:https://arxiv.org/pdf/2111.14330.pdf计算机视觉研究院专栏作者:Edison_GDETR是第一个使用transformer编......