首页 > 其他分享 >20220929

20220929

时间:2022-09-29 20:36:32浏览次数:91  
标签:20220929 int fo ans include out getchar

20220929(中)

t1 智力大冲浪

传送门

思路

​ 非常明显的贪心,能尽可能的少扣钱就少扣钱,即将每个游戏按其价值从大到小排序。那么考虑如何在该基础上加入时间的情况下贪心。其实也很显然,能在自身规定时间踩点完成是最好的。因为这样能最大程度地避免影响其它游戏。如果该时间已经被使用过了,就往之前的找没有使用过的时间即可。毕竟如果两个游戏冲突,按照贪心的思想,肯定得优先保证价值更大的。

点击查看代码
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define ll long long
#define fo(i,x,y) for(int i=x;i<=y;++i)
using namespace std;
template<typename T>inline void in(T &x){
    x=0;int f=0;char c=getchar();
    for(;!isdigit(c);c=getchar())f|=(c=='-');
    for(;isdigit(c);c=getchar())x=(x<<1)+(x<<3)+(c^48);
    x=f?-x:x;
}
template<typename T>inline void out(T x){
    if(x<0)x=~x+1,putchar('-');
    if(x>9)out(x/10);
    putchar(x%10^48);
}
const int N=505;
int n;
ll m;
int t[N],w[N];
struct game{
    ll t,w;
}g[N];
bool v[N];
inline bool cmp(game a,game b){
    return a.w>b.w;
}
int main(){
    in(m),in(n);
    fo(i,1,n)in(g[i].t);
    fo(i,1,n)in(g[i].w);
    sort(g+1,g+n+1,cmp);
    fo(i,1,n){
	if(!v[g[i].t]){
	    v[g[i].t]=1;
	}
	else{
	    int j;
	    for(j=g[i].t-1;v[j]&&j;--j);
		if(j)v[j]=1;
		elsem-=g[i].w;
	}
    }
    out(m);
    return 0;
}

小优化

​ 一个可以将该算法从\(O(n^{2})\)优化成\(O(n)\)的小优化。可以发现,我们处理一个游戏时,会往回扫之前已经用过的时间。我们可以考虑在用完该时间后将该时间与前面的时间合并,使得每次只需往回扫一次即可。

t2 发微博

传送门

暴力思路

​ 首先,我们可以暴力地进行模拟,\(x\)发微博时给其所有好友答案加1,成为好友时加入,解除好友时删除,可以用vector或者set实现。不过vector删除操作比较慢,而且还需要迭代器,但是set插入操作又不如vector。

点击查看代码
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<vector>
#define ll long long
#define fo(i,x,y) for(int i=x;i<=y;++i)
using namespace std;
template<typename T>inline void in(T &x){
    x=0;int f=0;char c=getchar();
    for(;!isdigit(c);c=getchar())f|=(c=='-');
    for(;isdigit(c);c=getchar())x=(x<<1)+(x<<3)+(c^48);
    x=f?-x:x;
}
template<typename T>inline void out(T x){
    if(x<0)x=~x+1,putchar('-');
    if(x>9)out(x/10);
    putchar(x%10^48);
}
const int N=200005;
int m,n,x,y;
char c;
vector <int> p[N];
vector <int> ::iterator it;
int ans[N];
int main(){
    in(n),in(m);
    fo(i,1,m){
	scanf("%c",&c);
            if(c=='!'){
	        in(x);
	        if(p[x].size())fo(i,0,p[x].size()-1)++ans[p[x][i]];
	    }
	    else if(c=='+'){
		in(x),in(y);
		p[x].push_back(y);
		p[y].push_back(x);
	    }
	    else{
		in(x),in(y);
		it=find(p[x].begin(),p[x].end(),y);
		if(it!=p[x].end())p[x].erase(it);
		it=find(p[y].begin(),p[y].end(),x);
		if(it!=p[x].end())p[y].erase(it);
	    }
    }
    fo(i,1,n-1)out(ans[i]),putchar(' ');
    out(ans[n]);
    return 0;
}

暴力做法遇到\(x\)多次发微博,且\(x\)好友很多时,就非常容易\(tle\),最坏情况的时间复杂度大概是\(O(nm)\)的,所以需要进行优化。

优化思路

​ 插入操作显然是无法进行什么优化的咯,所以就考虑如何优化统计答案的过程。可以发现,一个人\(x\)贡献的答案其实就是\(x\)的好友\(y\)在\(x\)和\(y\)成为好友后到解除好友之前,\(y\)所发出的微博数。那我们就可以用一个类似于前缀和的方式维护它。在\(x,y\)成为好友时给\(x,y\)的答案个数减去他们之前所发微博数,解除好友后加上总微博数,其实就是完成了一个类似于\(sum[r]-sum[l-i]\)前缀和的操作。不过,还要注意最后可能还有好友关系没有解除,需要手动解除一下。

点击查看代码
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<vector>
#define ll long long
#define fo(i,x,y) for(int i=x;i<=y;++i)
using namespace std;
template<typename T>inline void in(T &x){
    x=0;int f=0;char c=getchar();
    for(;!isdigit(c);c=getchar())f|=(c=='-');
    for(;isdigit(c);c=getchar())x=(x<<1)+(x<<3)+(c^48);
    x=f?-x:x;
}
template<typename T>inline void out(T x){
    if(x<0)x=~x+1,putchar('-');
    if(x>9)out(x/10);
    putchar(x%10^48);
}
const int N=200005;
int m,n,x,y;
char c;
int cnt[N];
vector <int> p[N];
vector <int> ::iterator it;
int ans[N];
int main(){
    in(n),in(m);
    fo(i,1,m){
	scanf("%c",&c);
	if(c=='!'){
	    in(x);
	    ++cnt[x];
	}
	else if(c=='+'){
	    in(x),in(y);
	    ans[x]-=cnt[y];
            ans[y]-=cnt[x];
	    p[x].push_back(y);
	    p[y].push_back(x);
	}
	else{
	    in(x),in(y);
	    ans[x]+=cnt[y];
            ans[y]+=cnt[x];
	    it=find(p[x].begin(),p[x].end(),y);
            if(it!=p[x].end())p[x].erase(it);
	    it=find(p[y].begin(),p[y].end(),x);
	    if(it!=p[x].end())p[y].erase(it);
	    }
    }
    fo(i,1,n)
    for(it=p[i].begin();it!=p[i].end();++it)ans[i]+=cnt[*it];
    fo(i,1,n-1)out(ans[i]),putchar(' ');
    out(ans[n]);
    return 0;
}

t3 发牌

传送门

朴素算法

​ 模拟。。。就不用多说了吧。

优化思路

如果能在让一次销牌在处理时直接跳过已经发出的牌,可以省下大把时间。

​ 一.我最初是想将已经发出的牌排到外面,即将一个序列\(1,2,3,4\),发出牌\(3\),变为\(1,2,3\),最后将大于等于3的位置在查找时加上这个位置排出的数的个数,将其复原为原序号。

​ 二.貌似用链表也能实现这个操作,不过查找还是比较慢。

​ 三.可以发现其实这道题就是在求牌堆顶之后排名第\(r[i]\)的数,这显然可以用平衡树维护,比如防火墙,树状数组其实也可以维护,只不过在查找时需要二分。

简单de算法

​ 浅谈一下简单且比较好理解的算法: 权值线段树。(我还是太蒻了,同机房dalao一眼就看出来了

这里推一波dalao的博客oWXDo

​ 我们用权值线段树来维护排名,这个排名是指从牌堆顶到一张牌的个数。这样应该就不用多讲了,毕竟这道题就相当于权值线段树的板子,看下注解就明白了。

点击查看代码
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define ll long long
#define fo(i,x,y) for(int i=x;i<=y;++i)
using namespace std;
template<typename T>inline void in(T &x){
    x=0;int f=0;char c=getchar();
    for(;!isdigit(c);c=getchar())f|=(c=='-');
    for(;isdigit(c);c=getchar())x=(x<<1)+(x<<3)+(c^48);
    x=f?-x:x;
}
template<typename T>inline void out(T x){
    if(x<0)x=~x+1,putchar('-');
    if(x>9)out(x/10);
    putchar(x%10^48);
}
const int N=700005;
int n;
int r;
struct node{
    int lch,rch,l,r,val;
}rt[N<<2];
int tot;
int build(int l,int r){
    int x=++tot;
    rt[x].l=l;
    rt[x].r=r;
    if(l==r){
	rt[x].val=1;
	return x;
    }
    int mid=l+r>>1;
    rt[x].lch=build(l,mid);
    rt[x].rch=build(mid+1,r);
    rt[x].val=rt[rt[x].lch].val+rt[rt[x].rch].val;
    return x;
}
int query(int x,int pos){
    --rt[x].val;
    if(rt[x].l==rt[x].r){
	return rt[x].l;
    }
    if(pos<=rt[rt[x].lch].val)return query(rt[x].lch,pos);
    else return query(rt[x].rch,pos-rt[rt[x].lch].val);
}
int now;//记录将几张牌放到牌库底
int main(){
    in(n);
    build(1,n);
    for(int i=n;i>=1;--i){
	in(r);
	now+=r;
	now%=i;//防止now的值大于权值线段树总值
	out(query(1,now+1)),putchar('\n');//查找将now张牌放到牌库底后牌库顶的牌是哪张
    }
    return 0;
}

t4 阶乘字符串

传送门

施工ing

标签:20220929,int,fo,ans,include,out,getchar
From: https://www.cnblogs.com/thanktothelights/p/16742944.html

相关文章

  • 20220929
    20220928传送门t1牛牛的方程式思路​ 由裴蜀定理:若\(a,b\)为整数,且\(gcd(a,b)=d\),那么一定存在整数\(x,y\)使得\(ax+by=d\)成立。这样,这道题就迎刃而解了。代码也非......
  • spring-retry 20220929
     1、pom.xml<dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot......