文章目录
- 集成学习案例二 (蒸汽量预测)
- 背景介绍
- 数据信息
- 评价指标
- 导入package
- 加载数据
- 探索数据分布
- 小小个人总结
- 特征工程
- 模型构建以及集成学习
- 进行模型的预测以及结果的保存
- 参考
集成学习案例二 (蒸汽量预测)
背景介绍
火力发电的基本原理是:燃料在燃烧时加热水生成蒸汽,蒸汽压力推动汽轮机旋转,然后汽轮机带动发电机旋转,产生电能。在这一系列的能量转化中,影响发电效率的核心是锅炉的燃烧效率,即燃料燃烧加热水产生高温高压蒸汽。锅炉的燃烧效率的影响因素很多,包括锅炉的可调参数,如燃烧给量,一二次风,引风,返料风,给水水量;以及锅炉的工况,比如锅炉床温、床压,炉膛温度、压力,过热器的温度等。我们如何使用以上的信息,根据锅炉的工况,预测产生的蒸汽量,来为我国的工业届的产量预测贡献自己的一份力量呢?
所以,该案例是使用以上工业指标的特征,进行蒸汽量的预测问题。由于信息安全等原因,我们使用的是经脱敏后的锅炉传感器采集的数据(采集频率是分钟级别)。
数据信息
数据分成训练数据(train.txt)和测试数据(test.txt),其中字段”V0”-“V37”,这38个字段是作为特征变量,”target”作为目标变量。我们需要利用训练数据训练出模型,预测测试数据的目标变量。
评价指标
最终的评价指标为均方误差MSE,即:
导入package
import warnings
warnings.filterwarnings("ignore")
import matplotlib.pyplot as plt
import seaborn as sns
# 模型
import pandas as pd
import numpy as np
from scipy import stats
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV, RepeatedKFold, cross_val_score,cross_val_predict,KFold
from sklearn.metrics import make_scorer,mean_squared_error
from sklearn.linear_model import LinearRegression, Lasso, Ridge, ElasticNet
from sklearn.svm import LinearSVR, SVR
from sklearn.neighbors import KNeighborsRegressor
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor,AdaBoostRegressor
from xgboost import XGBRegressor
from sklearn.preprocessing import PolynomialFeatures,MinMaxScaler,StandardScaler
加载数据
data_train = pd.read_csv('train.txt',sep = '\t')
data_test = pd.read_csv('test.txt',sep = '\t')
#合并训练数据和测试数据
data_train["oringin"]="train"
data_test["oringin"]="test"
data_all=pd.concat([data_train,data_test],axis=0,ignore_index=True)
#显示前5条数据
data_all.head()
V0 | V1 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 | ... | V36 | V37 | V4 | V5 | V6 | V7 | V8 | V9 | oringin | target | |
0 | 0.566 | 0.016 | -0.940 | -0.307 | -0.073 | 0.550 | -0.484 | 0.000 | -1.707 | -1.162 | ... | -2.608 | -3.508 | 0.452 | -0.901 | -1.812 | -2.360 | -0.436 | -2.114 | train | 0.175 |
1 | 0.968 | 0.437 | 0.188 | -0.455 | -0.134 | 1.109 | -0.488 | 0.000 | -0.977 | -1.162 | ... | -0.335 | -0.730 | 0.194 | -0.893 | -1.566 | -2.360 | 0.332 | -2.114 | train | 0.676 |
2 | 1.013 | 0.568 | 0.874 | -0.051 | -0.072 | 0.767 | -0.493 | -0.212 | -0.618 | -0.897 | ... | 0.765 | -0.589 | 0.112 | -0.797 | -1.367 | -2.360 | 0.396 | -2.114 | train | 0.633 |
3 | 0.733 | 0.368 | 0.011 | 0.102 | -0.014 | 0.769 | -0.371 | -0.162 | -0.429 | -0.897 | ... | 0.333 | -0.112 | 0.599 | -0.679 | -1.200 | -2.086 | 0.403 | -2.114 | train | 0.206 |
4 | 0.684 | 0.638 | -0.251 | 0.570 | 0.199 | -0.349 | -0.342 | -0.138 | -0.391 | -0.897 | ... | -0.280 | -0.028 | 0.337 | -0.454 | -1.073 | -2.086 | 0.314 | -2.114 | train | 0.384 |
5 rows × 40 columns
探索数据分布
这里因为是传感器的数据,即连续变量,所以使用 kdeplot(核密度估计图) 进行数据的初步分析,即EDA。
小小个人总结
- EDA 往往给人的一种感觉就是一看就会,一干就废的感觉,让人很容易眼高手低(因为我们看到的但是别人智力后的成果,没有看到背后人做EDA可能做到做梦还在想这个东西)
- 其实数据探索分析是数据挖掘中不可缺少的一步,数据处理怎么处理来源于你的探索,特征工程中的特征构造源你的EDA,或许当初你细心点,耐心点分析一下数据,多画一点图的探究数据的奥秘,你做出来的特征放到模型中,或许就能让你上分很多,让你开心了,毕竟特征工程决定了模型的上限,数据分析得耐得住寂寞https://www.cntofu.com/book/172/docs/25.md 详解seaborn中文文档
for column in data_all.columns[0:-2]:
#核密度估计(kernel density estimation)是在概率论中用来估计未知的密度函数,属于非参数检验方法之一。通过核密度估计图可以比较直观的看出数据样本本身的分布特征。
g = sns.kdeplot(data_all[column][(data_all["oringin"] == "train")], color="Red", shade = True)
g = sns.kdeplot(data_all[column][(data_all["oringin"] == "test")], ax =g, color="Blue", shade= True)
g.set_xlabel(column)
g.set_ylabel("Frequency")
g = g.legend(["train","test"])
plt.show()
从以上的图中可以看出特征"V5",“V9”,“V11”,“V17”,“V22”,"V28"中训练集数据分布和测试集数据分布不均,所以我们删除这些特征数据
for column in ["V5","V9","V11","V17","V22","V28"]:
g = sns.kdeplot(data_all[column][(data_all["oringin"] == "train")], color="Red", shade = True)
g = sns.kdeplot(data_all[column][(data_all["oringin"] == "test")], ax =g, color="Blue", shade= True)
g.set_xlabel(column)
g.set_ylabel("Frequency")
g = g.legend(["train","test"])
plt.show()
data_all.drop(["V5","V9","V11","V17","V22","V28"],axis=1,inplace=True)
查看特征之间的相关性(相关程度)
data_train1=data_all[data_all["oringin"]=="train"].drop("oringin",axis=1)
plt.figure(figsize=(20, 16)) # 指定绘图对象宽度和高度
colnm = data_train1.columns.tolist() # 列表头
mcorr = data_train1[colnm].corr(method="spearman") # 相关系数矩阵,即给出了任意两个变量之间的相关系数
mask = np.zeros_like(mcorr, dtype=np.bool) # 构造与mcorr同维数矩阵 为bool型
mask[np.triu_indices_from(mask)] = True # 角分线右侧为True
cmap = sns.diverging_palette(220, 10, as_cmap=True) # 返回matplotlib colormap对象,调色板
g = sns.heatmap(mcorr, mask=mask, cmap=cmap, square=True, annot=True, fmt='0.2f') # 热力图(看两两相似度)
plt.show()
进行降维操作,即将相关性的绝对值小于阈值的特征进行删除
threshold = 0.1
corr_matrix = data_train1.corr().abs()
drop_col=corr_matrix[corr_matrix["target"]<threshold].index
data_all.drop(drop_col,axis=1,inplace=True)
进行归一化操作
cols_numeric=list(data_all.columns)
cols_numeric.remove("oringin")
def scale_minmax(col):
return (col-col.min())/(col.max()-col.min())
scale_cols = [col for col in cols_numeric if col!='target'] # 其实就是删掉'target'
data_all[scale_cols] = data_all[scale_cols].apply(scale_minmax,axis=0)
data_all[scale_cols].describe()
V0 | V1 | V10 | V12 | V13 | V15 | V16 | V18 | V19 | V2 | ... | V3 | V30 | V31 | V35 | V36 | V37 | V4 | V6 | V7 | V8 | |
count | 4813.000000 | 4813.000000 | 4813.000000 | 4813.000000 | 4813.000000 | 4813.000000 | 4813.000000 | 4813.000000 | 4813.000000 | 4813.000000 | ... | 4813.000000 | 4813.000000 | 4813.000000 | 4813.000000 | 4813.000000 | 4813.000000 | 4813.000000 | 4813.000000 | 4813.000000 | 4813.000000 |
mean | 0.694172 | 0.721357 | 0.348518 | 0.578507 | 0.612372 | 0.402251 | 0.679294 | 0.446542 | 0.519158 | 0.602300 | ... | 0.603139 | 0.589459 | 0.792709 | 0.762873 | 0.332385 | 0.545795 | 0.523743 | 0.748823 | 0.745740 | 0.715607 |
std | 0.144198 | 0.131443 | 0.134882 | 0.105088 | 0.149835 | 0.138561 | 0.112095 | 0.124627 | 0.140166 | 0.140628 | ... | 0.152462 | 0.130786 | 0.102976 | 0.102037 | 0.127456 | 0.150356 | 0.106430 | 0.132560 | 0.132577 | 0.118105 |
min | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
25% | 0.626676 | 0.679416 | 0.284327 | 0.532892 | 0.519928 | 0.299016 | 0.629414 | 0.399302 | 0.414436 | 0.514414 | ... | 0.503888 | 0.550092 | 0.761816 | 0.727273 | 0.270584 | 0.445647 | 0.478182 | 0.683324 | 0.696938 | 0.664934 |
50% | 0.729488 | 0.752497 | 0.366469 | 0.591635 | 0.627809 | 0.391437 | 0.700258 | 0.456256 | 0.540294 | 0.617072 | ... | 0.614270 | 0.594428 | 0.815055 | 0.800020 | 0.347056 | 0.539317 | 0.535866 | 0.774125 | 0.771974 | 0.742884 |
75% | 0.790195 | 0.799553 | 0.432965 | 0.641971 | 0.719958 | 0.489954 | 0.753279 | 0.501745 | 0.623125 | 0.700464 | ... | 0.710474 | 0.650798 | 0.852229 | 0.800020 | 0.414861 | 0.643061 | 0.585036 | 0.842259 | 0.836405 | 0.790835 |
max | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | ... | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
8 rows × 25 columns
特征工程
绘图显示Box-Cox变换对数据分布影响,Box-Cox用于连续的响应变量不满足正态分布的情况。在进行Box-Cox变换之后,可以一定程度上减小不可观测的误差和预测变量的相关性。
对于quantitle-quantile(q-q)图,可参考:
q-q 图是通过比较数据和正态分布的分位数是否相等来判断数据是不是符合正态分布
stats.boxcox()函数详解
fcols = 6
frows = len(cols_numeric)-1 #行
plt.figure(figsize=(4*fcols,4*frows))
i=0
for var in cols_numeric:
if var!='target':
dat = data_all[[var, 'target']].dropna() # dropna()方法,能够找到DataFrame类型数据的空值(缺失值),将空值所在的行/列删除后,将新的DataFrame作为返回值返回。
i+=1
plt.subplot(frows,fcols,i)
sns.distplot(dat[var] , fit=stats.norm);
plt.title(var+' Original')
plt.xlabel('')
i+=1
plt.subplot(frows,fcols,i)
_=stats.probplot(dat[var], plot=plt) # 画QQ图
plt.title('skew='+'{:.4f}'.format(stats.skew(dat[var])))
plt.xlabel('')
plt.ylabel('')
i+=1
plt.subplot(frows,fcols,i)
plt.plot(dat[var], dat['target'],'.',alpha=0.5)
plt.title('corr='+'{:.2f}'.format(np.corrcoef(dat[var], dat['target'])[0][1]))
i+=1
plt.subplot(frows,fcols,i)
trans_var, lambda_var = stats.boxcox(dat[var].dropna()+1)
trans_var = scale_minmax(trans_var)
sns.distplot(trans_var , fit=stats.norm);
plt.title(var+' Tramsformed')
plt.xlabel('')
i+=1
plt.subplot(frows,fcols,i)
_=stats.probplot(trans_var, plot=plt)
plt.title('skew='+'{:.4f}'.format(stats.skew(trans_var)))
plt.xlabel('')
plt.ylabel('')
i+=1
plt.subplot(frows,fcols,i)
plt.plot(trans_var, dat['target'],'.',alpha=0.5)
plt.title('corr='+'{:.2f}'.format(np.corrcoef(trans_var,dat['target'])[0][1]))
# 进行Box-Cox变换
cols_transform=data_all.columns[0:-2]
for col in cols_transform:
# transform column
data_all.loc[:,col], _ = stats.boxcox(data_all.loc[:,col]+1)
print(data_all.target.describe())
plt.figure(figsize=(12,4))
plt.subplot(1,2,1)
sns.distplot(data_all.target.dropna() , fit=stats.norm);
plt.subplot(1,2,2)
_=stats.probplot(data_all.target.dropna(), plot=plt)
count 2888.000000
mean 0.126353
std 0.983966
min -3.044000
25% -0.350250
50% 0.313000
75% 0.793250
max 2.538000
Name: target, dtype: float64
使用对数变换target目标值提升特征数据的正态性
可参考:https://www.zhihu.com/question/22012482
sp = data_train.target
data_train.target1 =np.power(1.5,sp)
print(data_train.target1.describe())
plt.figure(figsize=(12,4))
plt.subplot(1,2,1)
sns.distplot(data_train.target1.dropna(),fit=stats.norm);
plt.subplot(1,2,2)
_=stats.probplot(data_train.target1.dropna(), plot=plt)
count 2888.000000
mean 1.129957
std 0.394110
min 0.291057
25% 0.867609
50% 1.135315
75% 1.379382
max 2.798463
Name: target, dtype: float64
模型构建以及集成学习
构建训练集和测试集
# function to get training samples
def get_training_data():
# extract training samples
from sklearn.model_selection import train_test_split
df_train = data_all[data_all["oringin"]=="train"]
df_train["label"]=data_train.target1
# split SalePrice and features
y = df_train.target
X = df_train.drop(["oringin","target","label"],axis=1)
X_train,X_valid,y_train,y_valid=train_test_split(X,y,test_size=0.3,random_state=100)
return X_train,X_valid,y_train,y_valid
# extract test data (without SalePrice)
def get_test_data():
df_test = data_all[data_all["oringin"]=="test"].reset_index(drop=True)
return df_test.drop(["oringin","target"],axis=1)
rmse、mse的评价函数
from sklearn.metrics import make_scorer
# metric for evaluation
def rmse(y_true, y_pred):
diff = y_pred - y_true
sum_sq = sum(diff**2)
n = len(y_pred)
return np.sqrt(sum_sq/n)
def mse(y_ture,y_pred):
return mean_squared_error(y_ture,y_pred)
# scorer to be used in sklearn model fitting
rmse_scorer = make_scorer(rmse, greater_is_better=False)
#输入的score_func为记分函数时,该值为True(默认值);输入函数为损失函数时,该值为False
mse_scorer = make_scorer(mse, greater_is_better=False)
寻找离群值,并删除
# function to detect outliers based on the predictions of a model
def find_outliers(model, X, y, sigma=3):
# predict y values using model
model.fit(X,y)
y_pred = pd.Series(model.predict(X), index=y.index)
# calculate residuals between the model prediction and true y values
resid = y - y_pred
mean_resid = resid.mean()
std_resid = resid.std()
# calculate z statistic, define outliers to be where |z|>sigma
z = (resid - mean_resid)/std_resid
outliers = z[abs(z)>sigma].index
# print and plot the results
print('R2=',model.score(X,y))
print('rmse=',rmse(y, y_pred))
print("mse=",mean_squared_error(y,y_pred))
print('---------------------------------------')
print('mean of residuals:',mean_resid)
print('std of residuals:',std_resid)
print('---------------------------------------')
print(len(outliers),'outliers:')
print(outliers.tolist())
plt.figure(figsize=(15,5))
ax_131 = plt.subplot(1,3,1)
plt.plot(y,y_pred,'.')
plt.plot(y.loc[outliers],y_pred.loc[outliers],'ro')
plt.legend(['Accepted','Outlier'])
plt.xlabel('y')
plt.ylabel('y_pred');
ax_132=plt.subplot(1,3,2)
plt.plot(y,y-y_pred,'.')
plt.plot(y.loc[outliers],y.loc[outliers]-y_pred.loc[outliers],'ro')
plt.legend(['Accepted','Outlier'])
plt.xlabel('y')
plt.ylabel('y - y_pred');
ax_133=plt.subplot(1,3,3)
z.plot.hist(bins=50,ax=ax_133)
z.loc[outliers].plot.hist(color='r',bins=50,ax=ax_133)
plt.legend(['Accepted','Outlier'])
plt.xlabel('z')
return outliers
# get training data
X_train, X_valid,y_train,y_valid = get_training_data()
test=get_test_data()
# 一种回归模型
# find and remove outliers using a Ridge model
outliers = find_outliers(Ridge(), X_train, y_train)
X_outliers=X_train.loc[outliers]
y_outliers=y_train.loc[outliers]
X_t=X_train.drop(outliers) # 删除
y_t=y_train.drop(outliers)
R2= 0.8766692300840108
rmse= 0.3490086770200251
mse= 0.12180705663526846
---------------------------------------
mean of residuals: 1.4843258844815303e-16
std of residuals: 0.34909505461744217
---------------------------------------
22 outliers:
[2655, 2159, 1164, 2863, 1145, 2697, 2528, 2645, 691, 1085, 1874, 2647, 884, 2696, 2668, 1310, 1901, 1458, 2769, 2002, 2669, 1972]
进行模型的训练
def get_trainning_data_omitoutliers():
#获取训练数据省略异常值
y=y_t.copy()
X=X_t.copy()
return X,y
def train_model(model, param_grid=[], X=[], y=[],
splits=5, repeats=5):
# 获取数据
if len(y)==0:
X,y = get_trainning_data_omitoutliers()
# 交叉验证
rkfold = RepeatedKFold(n_splits=splits, n_repeats=repeats)
# 网格搜索最佳参数
if len(param_grid)>0:
gsearch = GridSearchCV(model, param_grid, cv=rkfold,
scoring="neg_mean_squared_error",
verbose=1, return_train_score=True)
# 训练
gsearch.fit(X,y)
# 最好的模型
model = gsearch.best_estimator_
best_idx = gsearch.best_index_
# 获取交叉验证评价指标
grid_results = pd.DataFrame(gsearch.cv_results_)
cv_mean = abs(grid_results.loc[best_idx,'mean_test_score'])
cv_std = grid_results.loc[best_idx,'std_test_score']
# 没有网格搜索
else:
grid_results = []
cv_results = cross_val_score(model, X, y, scoring="neg_mean_squared_error", cv=rkfold)
cv_mean = abs(np.mean(cv_results))
cv_std = np.std(cv_results)
# 合并数据
cv_score = pd.Series({'mean':cv_mean,'std':cv_std})
# 预测
y_pred = model.predict(X)
# 模型性能的统计数据
print('----------------------')
print(model)
print('----------------------')
print('score=',model.score(X,y))
print('rmse=',rmse(y, y_pred))
print('mse=',mse(y, y_pred))
print('cross_val: mean=',cv_mean,', std=',cv_std)
# 残差分析与可视化
y_pred = pd.Series(y_pred,index=y.index)
resid = y - y_pred
mean_resid = resid.mean()
std_resid = resid.std()
z = (resid - mean_resid)/std_resid
n_outliers = sum(abs(z)>3)
outliers = z[abs(z)>3].index
return model, cv_score, grid_results
# 定义训练变量存储数据
opt_models = dict()
score_models = pd.DataFrame(columns=['mean','std'])
splits=5
repeats=5
model = 'Ridge' #可替换,见案例分析一的各种模型
opt_models[model] = Ridge() #可替换,见案例分析一的各种模型
alph_range = np.arange(0.25,6,0.25)
param_grid = {'alpha': alph_range}
opt_models[model],cv_score,grid_results = train_model(opt_models[model], param_grid=param_grid,
splits=splits, repeats=repeats)
cv_score.name = model
score_models = score_models.append(cv_score)
plt.figure()
plt.errorbar(alph_range, abs(grid_results['mean_test_score']),
abs(grid_results['std_test_score'])/np.sqrt(splits*repeats))
plt.xlabel('alpha')
plt.ylabel('score')
Fitting 25 folds for each of 23 candidates, totalling 575 fits
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
----------------------
Ridge(alpha=0.25, copy_X=True, fit_intercept=True, max_iter=None,
normalize=False, random_state=None, solver='auto', tol=0.001)
----------------------
score= 0.8926884448727849
rmse= 0.32466407807582776
mse= 0.10540676359282722
cross_val: mean= 0.10890639745404394 , std= 0.007654061179739962
[Parallel(n_jobs=1)]: Done 575 out of 575 | elapsed: 2.7s finished
Text(0, 0.5, 'score')
# 预测函数
def model_predict(test_data,test_y=[]):
i=0
y_predict_total=np.zeros((test_data.shape[0],))
for model in opt_models.keys():
if model!="LinearSVR" and model!="KNeighbors":
y_predict=opt_models[model].predict(test_data)
y_predict_total+=y_predict
i+=1
if len(test_y)>0:
print("{}_mse:".format(model),mean_squared_error(y_predict,test_y))
y_predict_mean=np.round(y_predict_total/i,6)
if len(test_y)>0:
print("mean_mse:",mean_squared_error(y_predict_mean,test_y))
else:
y_predict_mean=pd.Series(y_predict_mean)
return y_predict_mean
进行模型的预测以及结果的保存
y_ = model_predict(test)
y_.to_csv('predict.txt',header = None,index = False)
参考