首页 > 其他分享 >驱动开发:内核中的自旋锁结构

驱动开发:内核中的自旋锁结构

时间:2022-09-29 14:43:54浏览次数:42  
标签:LIST 自旋 list 链表 内核 ENTRY 驱动 my 节点

提到自旋锁那就必须要说链表,在上一篇《驱动开发:内核中的链表与结构体》文章中简单实用链表结构来存储进程信息列表,相信读者应该已经理解了内核链表的基本使用,本篇文章将讲解自旋锁的简单应用,自旋锁是为了解决内核链表读写时存在线程同步问题,解决多线程同步问题必须要用锁,通常使用自旋锁,自旋锁是内核中提供的一种高IRQL锁,用同步以及独占的方式访问某个资源。

首先以简单的链表为案例,链表主要分为单向链表与双向链表,单向链表的链表节点中只有一个链表指针,其指向后一个链表元素,而双向链表节点中有两个链表节点指针,其中Blink指向前一个链表节点Flink指向后一个节点,以双向链表为例。

#include <ntifs.h>
#include <ntstrsafe.h>

/*
// 链表节点指针
typedef struct _LIST_ENTRY
{
  struct _LIST_ENTRY *Flink;   // 当前节点的后一个节点
  struct _LIST_ENTRY *Blink;   // 当前节点的前一个结点
}LIST_ENTRY, *PLIST_ENTRY;
*/

typedef struct _MyStruct
{
  ULONG x;
  ULONG y;
  LIST_ENTRY lpListEntry;
}MyStruct,*pMyStruct;

VOID UnDriver(PDRIVER_OBJECT driver)
{
  DbgPrint("驱动卸载成功 \n");
}

// By: LyShark
NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
  DbgPrint("By:LyShark \n");
  DbgPrint("Email:[email protected] \n");
  // 初始化头节点
  LIST_ENTRY ListHeader = { 0 };
  InitializeListHead(&ListHeader);

  // 定义链表元素
  MyStruct testA = { 0 };
  MyStruct testB = { 0 };
  MyStruct testC = { 0 };

  testA.x = 100;
  testA.y = 200;

  testB.x = 1000;
  testB.y = 2000;

  testC.x = 10000;
  testC.y = 20000;

  // 分别插入节点到头部和尾部
  InsertHeadList(&ListHeader, &testA.lpListEntry);
  InsertTailList(&ListHeader, &testB.lpListEntry);
  InsertTailList(&ListHeader, &testC.lpListEntry);

  // 节点不为空 则 移除一个节点
  if (IsListEmpty(&ListHeader) == FALSE)
  {
    RemoveEntryList(&testA.lpListEntry);
  }

  // 输出链表数据
  PLIST_ENTRY pListEntry = NULL;
  pListEntry = ListHeader.Flink;

  while (pListEntry != &ListHeader)
  {
    // 计算出成员距离结构体顶部内存距离
    pMyStruct ptr = CONTAINING_RECORD(pListEntry, MyStruct, lpListEntry);
    DbgPrint("节点元素X = %d 节点元素Y = %d \n", ptr->x, ptr->y);

    // 得到下一个元素地址
    pListEntry = pListEntry->Flink;
  }

  Driver->DriverUnload = UnDriver;
  return STATUS_SUCCESS;
}

链表输出效果如下:

如上所述,内核链表读写时存在线程同步问题,解决多线程同步问题必须要用锁,通常使用自旋锁,自旋锁是内核中提供的一种高IRQL锁,用同步以及独占的方式访问某个资源。

#include <ntifs.h>
#include <ntstrsafe.h>

/*
// 链表节点指针
typedef struct _LIST_ENTRY
{
struct _LIST_ENTRY *Flink;   // 当前节点的后一个节点
struct _LIST_ENTRY *Blink;   // 当前节点的前一个结点
}LIST_ENTRY, *PLIST_ENTRY;
*/

typedef struct _MyStruct
{
	ULONG x;
	ULONG y;
	LIST_ENTRY lpListEntry;
}MyStruct, *pMyStruct;

// 定义全局链表和全局锁
LIST_ENTRY my_list_header;
KSPIN_LOCK my_list_lock;

// 初始化
void Init()
{
	InitializeListHead(&my_list_header);
	KeInitializeSpinLock(&my_list_lock);
}

// 函数内使用锁
void function_ins()
{
	KIRQL Irql;

	// 加锁
	KeAcquireSpinLock(&my_list_lock, &Irql);

	DbgPrint("锁内部执行 \n");

	// 释放锁
	KeReleaseSpinLock(&my_list_lock, Irql);
}

VOID UnDriver(PDRIVER_OBJECT driver)
{
	DbgPrint("驱动卸载成功 \n");
}

// By: LyShark
NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
	DbgPrint("By:LyShark \n");
	DbgPrint("Email:[email protected] \n");

	// 初始化链表
	Init();

	// 分配链表空间
	pMyStruct testA = (pMyStruct)ExAllocatePool(NonPagedPoolExecute, sizeof(pMyStruct));
	pMyStruct testB = (pMyStruct)ExAllocatePool(NonPagedPoolExecute, sizeof(pMyStruct));

	// 赋值
	testA->x = 100;
	testA->y = 200;

	testB->x = 1000;
	testB->y = 2000;

	// 向全局链表中插入数据
	if (NULL != testA && NULL != testB)
	{
		ExInterlockedInsertHeadList(&my_list_header, (PLIST_ENTRY)&testA->lpListEntry, &my_list_lock);
		ExInterlockedInsertTailList(&my_list_header, (PLIST_ENTRY)&testB->lpListEntry, &my_list_lock);
	}

	function_ins();

	// 移除节点A并放入到remove_entry中
	PLIST_ENTRY remove_entry = ExInterlockedRemoveHeadList(&testA->lpListEntry, &my_list_lock);

	// 输出链表数据
	while (remove_entry != &my_list_header)
	{
		// 计算出成员距离结构体顶部内存距离
		pMyStruct ptr = CONTAINING_RECORD(remove_entry, MyStruct, lpListEntry);
		DbgPrint("节点元素X = %d 节点元素Y = %d \n", ptr->x, ptr->y);

		// 得到下一个元素地址
		remove_entry = remove_entry->Flink;
	}

	Driver->DriverUnload = UnDriver;
	return STATUS_SUCCESS;
}

加锁后执行效果如下:

标签:LIST,自旋,list,链表,内核,ENTRY,驱动,my,节点
From: https://blog.51cto.com/lyshark/5718460

相关文章

  • 驱动开发:内核字符串转换方法
    在内核编程中字符串有两种格式ANSI_STRING与UNICODE_STRING,这两种格式是微软推出的安全版本的字符串结构体,也是微软推荐使用的格式,通常情况下ANSI_STRING代表的类型是char*......
  • MTK 驱动调试手册
    MTK无线驱动开发调试手册   1、前言    2、MTKWifi芯片简介        2.1单频WIFI芯片信息        2.2WiFi驱动版本    3、MTK无线驱......
  • 驱动开发:内核字符串拷贝与比较
    在上一篇文章《驱动开发:内核字符串转换方法》中简单介绍了内核是如何使用字符串以及字符串之间的转换方法,本章将继续探索字符串的拷贝与比较,与应用层不同内核字符串拷贝与比......
  • 圆满落幕!“第二届工程中的数据驱动计算和机器学习国际会议”亮点与干货集锦
    数据驱动 | 图像重建微积分方程 |数据驱动仿真大数据设计 | 地质力学模型材料表征学习| 多源数据可视化第二届工程中的数据驱动计算和机器学习国际会议(Internationa......
  • 基于显扬科技3D机器视觉的驱动轮抓取上料系统
    背景:驱动轮是驱动汽车行驶的车轮,其体积大且重,在生产线上的上下料存在人工操作困难,生产效率低的问题。行业难点:1、驱动轮工件体积大且重,传统通过人工操作设备进行抓取,生产效......
  • [答疑]把领域驱动建模的一招半式用到了手里的小项目
    ​​软件方法(下)分析和设计第8章连载[20210723更新]>>​​永远的幻想♂(123***302)18:20:41今天太开心了,之前这段时间把领域驱动建模的一招半式用到了手里的小项目了,今天去......
  • EFCore实体优先,模型驱动开发
    以下代码在”程序包管理控件器“窗口执行,且必须添加:Microsoft.EntityFrameworkCore.Tools包根据实体类生成迁移代码:add-migrationInitialCreate执行数据库迁移代码......
  • 驱动开发:内核字符串转换方法
    在内核编程中字符串有两种格式ANSI_STRING与UNICODE_STRING,这两种格式是微软推出的安全版本的字符串结构体,也是微软推荐使用的格式,通常情况下ANSI_STRING代表的类型是char......
  • 自动化测试脚本中的数据驱动
    主要依赖的库:ddt对于自动化测试中同一场景不同参数的用例,通常导入ddt模块对参数化的数据进行解包和处理从csv文件中取数据的方法defget_csv_data(self,filepath,mod......
  • EG3033,3NMOS+3PMOS三相半桥驱动芯片
    1. 特性  三相 P/NMOS 管栅极驱动  电源电压输入范围:6V-36V  适应 3V-30V 输入电压  具有 VCC 欠压保护  内置 5V/50mA 输出 LDO  内建死区控制电路......