我们接着讨论设计模式,上篇文章我讲完了5种创建型模式,这章开始,我将讲下7种结构型模式:适配器模式、装饰模式、代理模式、外观模式、桥接模式、组合模式、享元模式。其中对象的适配器模式是各种模式的起源,我们看下面的图:
6、适配器模式(Adapter)
适配器模式将某个类的接口转换成客户端期望的另一个接口表示,目的是消除由于接口不匹配所造成的类的兼容性问题。主要分为三类:类的适配器模式、对象的适配器模式、接口的适配器模式。首先,我们来看看类的适配器模式,先看类图:
核心思想就是:有一个Source类,拥有一个方法,待适配,目标接口时Targetable,通过Adapter类,将Source的功能扩展到Targetable里,看代码:
1. public class Source {
2.
3. public void method1() {
4. "this is original method!");
5. }
6. }
1. public interface Targetable {
2.
3. /* 与原类中的方法相同 */
4. public void method1();
5.
6. /* 新类的方法 */
7. public void method2();
8. }
1. public class Adapter extends Source implements Targetable {
2.
3. @Override
4. public void method2() {
5. "this is the targetable method!");
6. }
7. }
Adapter类继承Source类,实现Targetable接口,下面是测试类:
1. public class AdapterTest {
2.
3. public static void main(String[] args) {
4. new Adapter();
5. target.method1();
6. target.method2();
7. }
8. }
输出:
this is original method!
this is the targetable method!
这样Targetable接口的实现类就具有了Source类的功能。
对象的适配器模式
基本思路和类的适配器模式相同,只是将Adapter类作修改,这次不继承Source类,而是持有Source类的实例,以达到解决兼容性的问题。看图:
只需要修改Adapter类的源码即可:
1. public class Wrapper implements Targetable {
2.
3. private Source source;
4.
5. public Wrapper(Source source){
6. super();
7. this.source = source;
8. }
9. @Override
10. public void method2() {
11. "this is the targetable method!");
12. }
13.
14. @Override
15. public void method1() {
16. source.method1();
17. }
18. }
测试类:
1. public class AdapterTest {
2.
3. public static void main(String[] args) {
4. new Source();
5. new Wrapper(source);
6. target.method1();
7. target.method2();
8. }
9. }
输出与第一种一样,只是适配的方法不同而已。
第三种适配器模式是接口的适配器模式,接口的适配器是这样的:有时我们写的一个接口中有多个抽象方法,当我们写该接口的实现类时,必须实现该接口的所有方法,这明显有时比较浪费,因为并不是所有的方法都是我们需要的,有时只需要某一些,此处为了解决这个问题,我们引入了接口的适配器模式,借助于一个抽象类,该抽象类实现了该接口,实现了所有的方法,而我们不和原始的接口打交道,只和该抽象类取得联系,所以我们写一个类,继承该抽象类,重写我们需要的方法就行。看一下类图:
这个很好理解,在实际开发中,我们也常会遇到这种接口中定义了太多的方法,以致于有时我们在一些实现类中并不是都需要。看代码:
1. public interface Sourceable {
2.
3. public void method1();
4. public void method2();
5. }
抽象类Wrapper2:
1. public abstract class Wrapper2 implements Sourceable{
2.
3. public void method1(){}
4. public void method2(){}
5. }
1. public class SourceSub1 extends Wrapper2 {
2. public void method1(){
3. "the sourceable interface's first Sub1!");
4. }
5. }
1. public class SourceSub2 extends Wrapper2 {
2. public void method2(){
3. "the sourceable interface's second Sub2!");
4. }
5. }
1. public class WrapperTest {
2.
3. public static void main(String[] args) {
4. new SourceSub1();
5. new SourceSub2();
6.
7. source1.method1();
8. source1.method2();
9. source2.method1();
10. source2.method2();
11. }
12. }
测试输出:
the sourceable interface's first Sub1!
the sourceable interface's second Sub2!
达到了我们的效果!
讲了这么多,总结一下三种适配器模式的应用场景:
类的适配器模式:当希望将一个类转换成满足另一个新接口的类时,可以使用类的适配器模式,创建一个新类,继承原有的类,实现新的接口即可。
对象的适配器模式:当希望将一个对象转换成满足另一个新接口的对象时,可以创建一个Wrapper类,持有原类的一个实例,在Wrapper类的方法中,调用实例的方法就行。
接口的适配器模式:当不希望实现一个接口中所有的方法时,可以创建一个抽象类Wrapper,实现所有方法,我们写别的类的时候,继承抽象类即可。
7、装饰模式(Decorator)
顾名思义,装饰模式就是给一个对象增加一些新的功能,而且是动态的,要求装饰对象和被装饰对象实现同一个接口,装饰对象持有被装饰对象的实例,关系图如下:
Source类是被装饰类,Decorator类是一个装饰类,可以为Source类动态的添加一些功能,代码如下:
1. public interface Sourceable {
2. public void method();
3. }
1. public class Source implements Sourceable {
2.
3. @Override
4. public void method() {
5. "the original method!");
6. }
7. }
1. public class Decorator implements Sourceable {
2.
3. private Sourceable source;
4.
5. public Decorator(Sourceable source){
6. super();
7. this.source = source;
8. }
9. @Override
10. public void method() {
11. "before decorator!");
12. source.method();
13. "after decorator!");
14. }
15. }
测试类:
1. public class DecoratorTest {
2.
3. public static void main(String[] args) {
4. new Source();
5. new Decorator(source);
6. obj.method();
7. }
8. }
输出:
before decorator!
the original method!
after decorator!
装饰器模式的应用场景:
1、需要扩展一个类的功能。
2、动态的为一个对象增加功能,而且还能动态撤销。(继承不能做到这一点,继承的功能是静态的,不能动态增删。)
缺点:产生过多相似的对象,不易排错!
8、代理模式(Proxy)
其实每个模式名称就表明了该模式的作用,代理模式就是多一个代理类出来,替原对象进行一些操作,比如我们在租房子的时候回去找中介,为什么呢?因为你对该地区房屋的信息掌握的不够全面,希望找一个更熟悉的人去帮你做,此处的代理就是这个意思。再如我们有的时候打官司,我们需要请律师,因为律师在法律方面有专长,可以替我们进行操作,表达我们的想法。先来看看关系图:
根据上文的阐述,代理模式就比较容易的理解了,我们看下代码:
1. public interface Sourceable {
2. public void method();
3. }
1. public class Source implements Sourceable {
2.
3. @Override
4. public void method() {
5. "the original method!");
6. }
7. }
1. public class Proxy implements Sourceable {
2.
3. private Source source;
4. public Proxy(){
5. super();
6. this.source = new Source();
7. }
8. @Override
9. public void method() {
10. before();
11. source.method();
12. atfer();
13. }
14. private void atfer() {
15. "after proxy!");
16. }
17. private void before() {
18. "before proxy!");
19. }
20. }
测试类:
1. public class ProxyTest {
2.
3. public static void main(String[] args) {
4. new Proxy();
5. source.method();
6. }
7.
8. }
输出:
before proxy!
the original method!
after proxy!
代理模式的应用场景:
如果已有的方法在使用的时候需要对原有的方法进行改进,此时有两种办法:
1、修改原有的方法来适应。这样违反了“对扩展开放,对修改关闭”的原则。
2、就是采用一个代理类调用原有的方法,且对产生的结果进行控制。这种方法就是代理模式。
使用代理模式,可以将功能划分的更加清晰,有助于后期维护!
9、外观模式(Facade)
外观模式是为了解决类与类之家的依赖关系的,像spring一样,可以将类和类之间的关系配置到配置文件中,而外观模式就是将他们的关系放在一个Facade类中,降低了类类之间的耦合度,该模式中没有涉及到接口,看下类图:(我们以一个计算机的启动过程为例)
我们先看下实现类:
1. public class CPU {
2.
3. public void startup(){
4. "cpu startup!");
5. }
6.
7. public void shutdown(){
8. "cpu shutdown!");
9. }
10. }
1. public class Memory {
2.
3. public void startup(){
4. "memory startup!");
5. }
6.
7. public void shutdown(){
8. "memory shutdown!");
9. }
10. }
1. public class Disk {
2.
3. public void startup(){
4. "disk startup!");
5. }
6.
7. public void shutdown(){
8. "disk shutdown!");
9. }
10. }
1. public class Computer {
2. private CPU cpu;
3. private Memory memory;
4. private Disk disk;
5.
6. public Computer(){
7. new CPU();
8. new Memory();
9. new Disk();
10. }
11.
12. public void startup(){
13. "start the computer!");
14. cpu.startup();
15. memory.startup();
16. disk.startup();
17. "start computer finished!");
18. }
19.
20. public void shutdown(){
21. "begin to close the computer!");
22. cpu.shutdown();
23. memory.shutdown();
24. disk.shutdown();
25. "computer closed!");
26. }
27. }
User类如下:
1. public class User {
2.
3. public static void main(String[] args) {
4. new Computer();
5. computer.startup();
6. computer.shutdown();
7. }
8. }
输出:
start the computer!
cpu startup!
memory startup!
disk startup!
start computer finished!
begin to close the computer!
cpu shutdown!
memory shutdown!
disk shutdown!
computer closed!
如果我们没有Computer类,那么,CPU、Memory、Disk他们之间将会相互持有实例,产生关系,这样会造成严重的依赖,修改一个类,可能会带来其他类的修改,这不是我们想要看到的,有了Computer类,他们之间的关系被放在了Computer类里,这样就起到了解耦的作用,这,就是外观模式!
10、桥接模式(Bridge)
桥接模式就是把事物和其具体实现分开,使他们可以各自独立的变化。桥接的用意是:将抽象化与实现化解耦,使得二者可以独立变化,像我们常用的JDBC桥DriverManager一样,JDBC进行连接数据库的时候,在各个数据库之间进行切换,基本不需要动太多的代码,甚至丝毫不用动,原因就是JDBC提供统一接口,每个数据库提供各自的实现,用一个叫做数据库驱动的程序来桥接就行了。我们来看看关系图:
实现代码:
先定义接口:
1. public interface Sourceable {
2. public void method();
3. }
分别定义两个实现类:
1. public class SourceSub1 implements Sourceable {
2.
3. @Override
4. public void method() {
5. "this is the first sub!");
6. }
7. }
1. public class SourceSub2 implements Sourceable {
2.
3. @Override
4. public void method() {
5. "this is the second sub!");
6. }
7. }
定义一个桥,持有Sourceable的一个实例:
1. public abstract class Bridge {
2. private Sourceable source;
3.
4. public void method(){
5. source.method();
6. }
7.
8. public Sourceable getSource() {
9. return source;
10. }
11.
12. public void setSource(Sourceable source) {
13. this.source = source;
14. }
15. }
1. public class MyBridge extends Bridge {
2. public void method(){
3. getSource().method();
4. }
5. }
测试类:
1. public class BridgeTest {
2.
3. public static void main(String[] args) {
4.
5. new MyBridge();
6.
7. /*调用第一个对象*/
8. new SourceSub1();
9. bridge.setSource(source1);
10. bridge.method();
11.
12. /*调用第二个对象*/
13. new SourceSub2();
14. bridge.setSource(source2);
15. bridge.method();
16. }
17. }
output:
this is the first sub!
this is the second sub!
这样,就通过对Bridge类的调用,实现了对接口Sourceable的实现类SourceSub1和SourceSub2的调用。接下来我再画个图,大家就应该明白了,因为这个图是我们JDBC连接的原理,有数据库学习基础的,一结合就都懂了。
11、组合模式(Composite)
组合模式有时又叫部分-整体模式在处理类似树形结构的问题时比较方便,看看关系图:
直接来看代码:
1. public class TreeNode {
2.
3. private String name;
4. private TreeNode parent;
5. private Vector<TreeNode> children = new Vector<TreeNode>();
6.
7. public TreeNode(String name){
8. this.name = name;
9. }
10.
11. public String getName() {
12. return name;
13. }
14.
15. public void setName(String name) {
16. this.name = name;
17. }
18.
19. public TreeNode getParent() {
20. return parent;
21. }
22.
23. public void setParent(TreeNode parent) {
24. this.parent = parent;
25. }
26.
27. //添加孩子节点
28. public void add(TreeNode node){
29. children.add(node);
30. }
31.
32. //删除孩子节点
33. public void remove(TreeNode node){
34. children.remove(node);
35. }
36.
37. //取得孩子节点
38. public Enumeration<TreeNode> getChildren(){
39. return children.elements();
40. }
41. }
1. public class Tree {
2.
3. null;
4.
5. public Tree(String name) {
6. new TreeNode(name);
7. }
8.
9. public static void main(String[] args) {
10. new Tree("A");
11. new TreeNode("B");
12. new TreeNode("C");
13.
14. nodeB.add(nodeC);
15. tree.root.add(nodeB);
16. "build the tree finished!");
17. }
18. }
使用场景:将多个对象组合在一起进行操作,常用于表示树形结构中,例如二叉树,数等。
12、享元模式(Flyweight)
享元模式的主要目的是实现对象的共享,即共享池,当系统中对象多的时候可以减少内存的开销,通常与工厂模式一起使用。
FlyWeightFactory负责创建和管理享元单元,当一个客户端请求时,工厂需要检查当前对象池中是否有符合条件的对象,如果有,就返回已经存在的对象,如果没有,则创建一个新对象,FlyWeight是超类。一提到共享池,我们很容易联想到Java里面的JDBC连接池,想想每个连接的特点,我们不难总结出:适用于作共享的一些个对象,他们有一些共有的属性,就拿数据库连接池来说,url、driverClassName、username、password及dbname,这些属性对于每个连接来说都是一样的,所以就适合用享元模式来处理,建一个工厂类,将上述类似属性作为内部数据,其它的作为外部数据,在方法调用时,当做参数传进来,这样就节省了空间,减少了实例的数量。
看个例子:
看下数据库连接池的代码:
1. public class ConnectionPool {
2.
3. private Vector<Connection> pool;
4.
5. /*公有属性*/
6. private String url = "jdbc:mysql://localhost:3306/test";
7. private String username = "root";
8. private String password = "root";
9. private String driverClassName = "com.mysql.jdbc.Driver";
10.
11. private int poolSize = 100;
12. private static ConnectionPool instance = null;
13. null;
14.
15. /*构造方法,做一些初始化工作*/
16. private ConnectionPool() {
17. new Vector<Connection>(poolSize);
18.
19. for (int i = 0; i < poolSize; i++) {
20. try {
21. Class.forName(driverClassName);
22. conn = DriverManager.getConnection(url, username, password);
23. pool.add(conn);
24. catch (ClassNotFoundException e) {
25. e.printStackTrace();
26. catch (SQLException e) {
27. e.printStackTrace();
28. }
29. }
30. }
31.
32. /* 返回连接到连接池 */
33. public synchronized void release() {
34. pool.add(conn);
35. }
36.
37. /* 返回连接池中的一个数据库连接 */
38. public synchronized Connection getConnection() {
39. if (pool.size() > 0) {
40. 0);
41. pool.remove(conn);
42. return conn;
43. else {
44. return null;
45. }
46. }
47. }
通过连接池的管理,实现了数据库连接的共享,不需要每一次都重新创建连接,节省了数据库重新创建的开销,提升了系统的性能!本章讲解了7种结构型模式,因为篇幅的问题,剩下的11种行为型模式,我们将另起篇章,敬请读者朋友们持续关注!
标签:void,模式,method,class,new,全解,设计模式,public From: https://blog.51cto.com/u_6468453/6784340