首页 > 其他分享 >洛谷 P1122 最大子树和 题解

洛谷 P1122 最大子树和 题解

时间:2023-07-19 14:00:36浏览次数:32  
标签:子树 洛谷 int 题解 vis ans 最优 P1122 DP

一道入门的树形DP。

首先我们对于数据进行有序化处理,这便于我们利用数据结构特点(可排序性)来发觉数据性质(有序、单调、子问题等等性质),以便于后续的转化、推理和处理。有序化可以“转化和创造”性质

首先将视角从无根树切换为有根树,这样我们就可以得到一个带有最优子结构、无后效性、子问题重叠性的结构——一个根和一堆子树。

由于我们是要求联通分量的最大值,我们观察到每一个联通分量都可以看做一个有根树,这就保证了树形DP的正确性。(后面会再解释)

不难想到令\(f_i\)表示包含该位置的、以\(i\)号节点为根的子树的最大值。

这里的“不难想到”其实有两种想法——第一种是树形DP的一般思路就是子啊一棵子树内处理根与子树的关系,这是一种常见的经验或者说手法。第二种想法就是说,连通分量可以转化成更小的联通分量,加上有序化之后,变成了子树层层求解。

我们考虑每一棵子树,不难发现初始化每个节点就是根节点自己的值,然后对于每一棵向下连接根节点的子树的最大值,如果大于零,那么我们就把根通向这棵子树的边连接起来。

令\(j\)为\(i\)子树根节点的编号,有$f_i = \sum f_j \times [f_j > 0] $

关于正确性,可能会有问题:对于一棵子树而言,我们只考虑了这些向下的分支,并没有考虑向上父节点的这支“分支”,感觉不太对劲?

实际上,我们要明确我们这里求的是一个小范围内子问题的最优解,不是全局最优解。如果每个点都考虑所有的分支情况(包括向上找父亲的那个分支),那么所有的点都是在求全局最优解,这样就无法进行DP或者状态转移了, 问题也没有得到简化。

我们考虑所谓“向上”的分支,实际上就是上面“向下”的分支,所以这种情况显然是可以被覆盖到的。如果上面的向下伸的这个分支是断的,没有到达这个子树的根节点,那么这棵子树加上向上一段的分支最大也会是负的,显然单独的子树或者单独的上面那个点都是更优的,不会有贡献。

实际上,我们陷入这种思维泥潭的主要原因还是不清楚DP的逻辑——DP的局部最优解是为全局服务的,这个局部最优解是在某种定义下成立的,不代表全局最优,但是可以求出全局最优。就比如这道题里面的局部最优解就不包括向上的分支,它只考虑这一棵子树内的情况,这样保证了问题的规模从小到大,保证了其他可以DP的性质。

思考DP算法,某种意义上而言,是一种构建数学和逻辑的“自动机”的过程。

DP可以从经验出发,可以从DP性质出发, 也可以从问题本身的性质出发,三者相互联系,加上一些转化或者优化的技巧可以求解。

总结:树形DP的一种一般分析方法是有序化(有根树)后考虑子树上跟和子树的关系转移;可以从小规模子问题入手;定义一种可以转移的状态(意义),并确定初始值和转移方法;时刻清楚讨论的问题和环境是什么,比如在局部最优中讨论整体最优就是无太大意义的,因为DP中不需要考虑

一种步骤:转化、子问题、状态、转移方程、优化

要格外注意递归中的“回头找”和计算和的关系。在这里是,不能把判断vis放到开头,不但多递归一层,就会多计算一层和。

源码:


#include <bits/stdc++.h>

#define N (int)(16005)

using namespace std;

typedef long long LL;

LL a[N];

vector<int> e[N];

LL f[N];

LL ans;

bool vis[N];

void dfs(int p)
{
	ans = max(ans,f[p]);
	vis[p] = true;
	vis[p] = true;
	//cout << p << "\n";
	for(int i = 0;i < e[p].size();i++)
	{
		int q = e[p][i];
		if(vis[q]) continue;
		dfs(q);
		//cout << p << " " << q << " " << f[p] << " " << f[q] << "\n";
		if(f[q] > 0) f[p] += f[q];
		ans = max(ans,f[p]);
	}
}

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);cout.tie(0);
	int n;
	cin >> n;
	memset(f,0x8f,sizeof(f));
	memset(vis,0,sizeof(vis));
	ans = -1e18;
	for(int i = 1;i <= n;i++)
	{
		cin >> a[i];
		f[i] = a[i];
	}
	for(int i = 1;i <= n-1;i++)
	{
		int x,y;
		cin >> x >> y;
		e[x].push_back(y);
		e[y].push_back(x);
	}
	dfs(1);
	cout << ans << "\n";
	return 0;
}

标签:子树,洛谷,int,题解,vis,ans,最优,P1122,DP
From: https://www.cnblogs.com/l-cacherr/p/17565399.html

相关文章

  • HDU 5492 Find a path 题解
    Description在矩阵中,找一条到从\((1,1)\)到\((n,m)\)(只能向上,右走)的路径,使路径上方差最小。输出方差平方乘\(n+m-1\)的结果。对于所有数据,\(1\leqn,m,A_{i,j}\leq30\)。Solution设路径上的数为\(A_{1},A_{2},A_{3},\cdots,A_{n+m-1}\),\(\overline{A}\)为其平均数,则答......
  • 题解 序列合并
    题目链接首先不难想到,最小数的一定是\(a_1+b_1\),次小的数是\(a_1+b_2\)和\(a_2+b_1\)中小的。得出结论,若\(a_i+b_j\)是第\(k\)小,那么\(a_{i+1}+b_j\)和\(a_i+b_{j+1}\)有可能成为第\(k+1\)小。这是一个很优秀的性质,这意味着我们可以通过最小值推出次小值,再通过......
  • “范式杯”2023牛客暑期多校训练营1 蒻蒟题解
    A.AlmostCorrect题意:给定一个01串,要求构造一系列排序操作(xi,yi),使得经过这些排序操作后可以使与给定01串等长的所有其他01串完全排好序,而给定的01串无法完全排好序Solution构造题我们考虑到对0和1的位置进行统计,统计得出最左边的1的位置为l,最右边的0的位置为r我们进行三次......
  • 【SP21463 题解】
    Descirption给定\(n\timesm\)的矩阵,求最大子矩阵的面积满足每一行每一列都构成等差数列。Solution我们另\(up_{i,j}\)表示最小的\(k\)满足\((i,k),(i,k+1),\cdots,(i,j)\)构成等差数列,可以用\(\mathcalO(nm)\)求出。对于一个矩阵的左上角\((a,b)\),右下......
  • 洛谷 P2458 [SDOI2006] 保安站岗 - 树形DP
    P2458保安站岗思路:树形DP三个状态:dp[i][0]:节点i位置放保安的最小花费dp[i][1]:节点i位置不放保安,但被子节点的保安看守dp[i][2]:节点i位置不放保安,但被父节点的保安看守状态转移:dp[i][0]:节点i位置放保安,那么它可以合并子节点任何状态的最小值;dp[i][1]:节点i位......
  • BZOJ 1461 题解
    考虑设计一个哈希函数\(hash(x)=f(x)\timesbase^x\)。其中\(f(x)\)表示\(\sum_{j=1}^{i-1}[j<i]\)。然后类似于滑动窗口计算区间哈希值,加入一个数就计算贡献,减去一个数就计算这个数产生了贡献,两个东西都可以树状数组维护,那么愉快做完了。#include<bits/stdc++.h>#de......
  • P5494 题解
    来一发\(O(\logn)\)线性空间的解法。考虑通过只维护线段树叶子节点的虚树的方法压缩空间,考虑记录下每个节点的编号,然后通过异或完求最低位的\(1\)的方式求出LCA的深度,然后记录下LCA右端点的编号。在回收节点的时候可以释放储存右端点编号的空间,但是这里为了方便就不这样......
  • UNR #7 Day2 T1 火星式选拔题解
    放一个比赛链接先考虑打完暴力后\(k=1\)的特殊性质。当队列容量为\(1\)时,队中的人\(i\)会被第一个满足\(i\leqj\)且\(b_i\leqa_j\)的人淘汰,并且队列中的人会变成\(j\),考虑倍增加速这个过程,令\(f_{i,j}\)表示第\(i\)个人进队后淘汰过程发生\(2^j\)次后队......
  • P6684 题解
    真的卡不动了,但是我感觉我的思路还是有一些价值的,就来写一篇题解吧。考虑使用回滚莫队(不增)来维护,当区间删去一个点时相当于全局加入一条边,这个询问的本质是询问是否是二分图,所以考虑扩展值域并查集,这里使用路径压缩加按秩合并,记录下修改,在回滚时全部还原。总复杂度是\(O(n\sqr......
  • 「JOISC 2019 Day4」蛋糕拼接 3 题解
    先考虑这个式子:\(\sum_{j=1}^{M}|C_{k_{j}}-C_{k_{j+1}}|\)一定是在\(C\)有序时取到,具体证明很简单各位读者自己证明。那么现在式子变成:\(\sum{V}+2\times({C_{\max}-C_{\min}})\)这个时候一个常见的技巧是将\(C\)排序。这个时候就可以定义状态:\(dp_{i,j}=\s......