首页 > 其他分享 >ITK 高斯混合模型 GMM EM

ITK 高斯混合模型 GMM EM

时间:2023-07-13 14:45:38浏览次数:39  
标签:EM itk GMM int 模型 混合 estimator 高斯 ITK

1、高斯混合模型
  sklearn.mixture是一个能够学习高斯混合模型、抽样高斯模型和从数据中估计模型的包。同样,也提供了帮助决定正确组件数量的方法。

  一个高斯混合模型是一个概率模型,它假设所有的数据点是从有限未知参数的高斯分布的混合生成的。可以将混合模型当作泛化的k均值聚类,以融合关于数据协方差和潜在高斯中心的信息。

高斯混合
  GaussianMixture对象实现了expection-maximization算法来拟合高斯混合模型。它也能够得到多元模型的置信椭圆,计算贝叶斯信息准则来确定数据中聚集类别的数量。GaussianMixture.fit方法从训练数据中学习一个高斯混合模型,GaussianMixture.predict能够分配给每个样本最大可能属于的高斯分布。

  GaussianMixture提供了不同的选项来限制不同类别估计的方差,包括,spherical、diagonal、tied或full方差。

2、变分贝叶斯高斯混合
  BayesianGaussianMixture对象实现了一系列考虑不同推断算法的高斯混合模型。

估计算法:变分推断
  变分推断(Variational Inference)是最大期望的扩展,它最大化模型证据的下界,而不是数据似然。其背后的原理与最大期望方法相同。但是变分推断方法通过集成先验分布的信息添加正则项。这可以避免在最大期望中经常发生的奇异性,但会引入偏差到模型中。

  BayesianGaussianMixture类提供了两类权重的先验:使用Dirichlet分布的有限混合模型和使用Dirichlet过程的无限混合模型。

3、ITK中的GMM、EM
  使用 ITK中的GMM、EM进行分布式采样

 1 #include "itkVector.h"
 2 #include "itkListSample.h"
 3 #include "itkGaussianMixtureModelComponent.h"
 4 #include "itkExpectationMaximizationMixtureModelEstimator.h"
 5 #include "itkNormalVariateGenerator.h"
 6 
 7 int
 8 main(int, char *[])
 9 {
10   unsigned int numberOfClasses = 2;
11   using MeasurementVectorType = itk::Vector<double, 1>;
12   using SampleType = itk::Statistics::ListSample<MeasurementVectorType>;
13   SampleType::Pointer sample = SampleType::New();
14 
15   using NormalGeneratorType = itk::Statistics::NormalVariateGenerator;
16   NormalGeneratorType::Pointer normalGenerator = NormalGeneratorType::New();
17 
18   normalGenerator->Initialize(101);
19 
20   MeasurementVectorType mv;
21   double                mean = 100;
22   double                standardDeviation = 30;
23   for (unsigned int i = 0; i < 10; ++i)
24   {
25     mv[0] = (normalGenerator->GetVariate() * standardDeviation) + mean;
26     std::cout << "m[" << i << "] = " << mv[0] << std::endl;
27     sample->PushBack(mv);
28   }
29 
30   normalGenerator->Initialize(3024);
31   mean = 200;
32   standardDeviation = 30;
33   for (unsigned int i = 0; i < 10; ++i)
34   {
35     mv[0] = (normalGenerator->GetVariate() * standardDeviation) + mean;
36     std::cout << "m[" << i << "] = " << mv[0] << std::endl;
37     sample->PushBack(mv);
38   }
39 
40   using ParametersType = itk::Array<double>;
41   ParametersType params1(2);
42 
43   std::vector<ParametersType> initialParameters(numberOfClasses);
44   params1[0] = 110.0;
45   params1[1] = 50.0;
46   initialParameters[0] = params1;
47 
48   ParametersType params2(2);
49   params2[0] = 210.0;
50   params2[1] = 50.0;
51   initialParameters[1] = params2;
52 
53   using ComponentType = itk::Statistics::GaussianMixtureModelComponent<SampleType>;
54 
55   std::vector<ComponentType::Pointer> components;
56   for (unsigned int i = 0; i < numberOfClasses; i++)
57   {
58     components.push_back(ComponentType::New());
59     components[i]->SetSample(sample);
60     components[i]->SetParameters(initialParameters[i]);
61   }
62 
63   using EstimatorType = itk::Statistics::ExpectationMaximizationMixtureModelEstimator<SampleType>;
64   EstimatorType::Pointer estimator = EstimatorType::New();
65 
66   estimator->SetSample(sample);
67   estimator->SetMaximumIteration(500);
68 
69   itk::Array<double> initialProportions(numberOfClasses);
70   initialProportions[0] = 0.5;
71   initialProportions[1] = 0.5;
72 
73   estimator->SetInitialProportions(initialProportions);
74 
75   for (unsigned int i = 0; i < numberOfClasses; i++)
76   {
77     estimator->AddComponent((ComponentType::Superclass *)components[i].GetPointer());
78   }
79 
80   estimator->Update();
81 
82   for (unsigned int i = 0; i < numberOfClasses; i++)
83   {
84     std::cout << "Cluster[" << i << "]" << std::endl;
85     std::cout << "    Parameters:" << std::endl;
86     std::cout << "         " << components[i]->GetFullParameters() << std::endl;
87     std::cout << "    Proportion: ";
88     std::cout << "         " << estimator->GetProportions()[i] << std::endl;
89   }
90 
91   return EXIT_SUCCESS;
92 }

运行输出结果:
前面20行分别是生成的2类,各10个样本,1类样本均值100,方差30;2类样本均值200,方差30.
21~24行是分类结果的1类参数;
25~28行是分类结果的2类参数;
占比之和为1;
参数应该是均值和方差,均值比较接近生成时的值 100和200,方差与原来的30差别巨大,还不知道怎么理解。

 1 m[0] = 156.311
 2 m[1] = 205.464
 3 m[2] = 80.8426
 4 m[3] = 136.952
 5 m[4] = 86.6091
 6 m[5] = 80.3185
 7 m[6] = 107.911
 8 m[7] = 63.1748
 9 m[8] = 107.082
10 m[9] = 112.343
11 m[0] = 189.946
12 m[1] = 174.951
13 m[2] = 243.387
14 m[3] = 169.488
15 m[4] = 261.163
16 m[5] = 215.278
17 m[6] = 212.506
18 m[7] = 150.613
19 m[8] = 186.132
20 m[9] = 213.155
21 Cluster[0]
22     Parameters:
23          [91.04822175454494, 385.98395103056583]
24     Proportion:          0.325826
25 Cluster[1]
26     Parameters:
27          [189.88473393439773, 1626.5175226586712]
28     Proportion:          0.674174

后来在代码中添加了打印信息:

estimator->Print(std::cout);

打印输出:

 1 ExpectationMaximizationMixtureModelEstimator (0000015D6BE586B0)
 2   RTTI typeinfo:   class itk::Statistics::ExpectationMaximizationMixtureModelEstimator<class itk::Statistics::ListSample<class itk::Vector<double,1> > >
 3   Reference Count: 1
 4   Modified Time: 74
 5   Debug: Off
 6   Object Name:
 7   Observers:
 8     none
 9   Maximum Iteration: 100
10   Sample: 0000015D6BE2B790
11   Number Of Components: 2
12   Component Membership Function[0]: 0000015D6BE53FC0
13   Component Membership Function[1]: 0000015D6BE58540
14   Termination Code: itk::Statistics::ExpectationMaximizationMixtureModelEstimatorEnums::TERMINATION_CODE::NOT_CONVERGED
15   Initial Proportions: [0.5, 0.5]
16   Proportions: [0.3258255562923341, 0.6741744437076659]
17   Calculated Expectation: -15.0301

从打印结果来看,EM算法更新了74次参数,设置的最大迭代次数是100,因此迭代次数是够用的,最终收敛期望是 -15.03, 退出代码说明 TERMINATION_CODE::NOT_CONVERGED 未收敛。
这是官方示例程序,所以不知道说啥。
正常理解应该是收敛到0附近。

标签:EM,itk,GMM,int,模型,混合,estimator,高斯,ITK
From: https://www.cnblogs.com/ybqjymy/p/17550422.html

相关文章

  • SimpleITK 图像配准
    SimpleITK图像配准在网上找的资源,效果不佳,等清楚了函数和原理再细改,调试效果。1#-*-coding:UTF-8-*-2#@file:regist.py3#@Time:2021-11-1217:004#@Author:wmz56importSimpleITKassitk78#Utilitymethodthateither......
  • ITK 最大圆度连通域提取
    最大圆度概念:圆度计算(Circularity,Roundness)1Roundness=(4*CV_PI*Area)/(Perimeter*Perimeter)2doublegetRoundness(std::vector<cv::Point>contour)3{4doublefactor=(cv::contourArea(contour)*4*CV_PI)/(pow(cv::arcLength(contour,true......
  • SimpleITK 图像对齐
    1、使用SimpleITK对齐图像在看voxelmorph的代码,看到图像对齐部分,记录一下。下面是从voxelmorph项目中截取的一段保存图像的函数。函数输入分别是:配准后的图像、固定图像、要将配准图像保存的名字。将图像对齐的操作需要将对齐的图像的原点、方向、间距设置成与被对齐的图像一致。......
  • SimpleITK 读写nii.gz文件
    1、读写nii.gz文件1##usingsimpleITKtoloadandsavedata.2importSimpleITKassitk3itk_img=sitk.ReadImage('./nifti.nii.gz')4img=sitk.GetArrayFromImage(itk_img)5print("imgshape:",img.shape)67##save8out=si......
  • SimpleITK 三维图像分析
    1、去除3D小连通域在一些计算机视觉任务中,需要对模型的输出做一些后处理以优化视觉效果,连通域就是一种常见的后处理方式。尤其对于分割任务,有时的输出mask会存在一些假阳(小的无用轮廓),通过3D连通域找出面积较小的独立轮廓并去除可以有效地提升视觉效果。二维图像连通域一......
  • Email代表发送
    一、代表发送1、需实现如图所示的功能: 答复时直接答复被代表者 2、参考资料https://stackoverflow.com/questions/44402582/send-email-using-on-behalf-of-using-apache-common-emailhttps://stackoverflow.com/questions/27343725/com-sun-mail-smtp-smtpsenderfailede......
  • Nginx:client_body_temp_path 指令的上传文件测试
    结论硬盘必须要有上传文件3倍大小的剩余空间。否则会报错“nospaceleftondevice”。需要注意,这3份数据都会写到硬盘。大文件上传,实时观察硬盘剩余空间watch-n0.1"df-hm/",会看到很大的波动。默认临时文件路径文档Syntax: client_body_temp_pathpath[level1[lev......
  • ITK 简单使用
    第一个ITK程序1、CMakeLists.txt1#ThisistherootITKCMakeListsfile.2cmake_minimum_required(VERSION3.10)34#ThisprojectisdesignedtobebuiltoutsidetheInsightsourcetree.5project(ITK_demo)67#FindVTK8set(ITK_DIRD:/Progr......
  • SimpleITK 简单使用
    SimpleITKITK是一个开源、跨平台的框架,提供给开发者增强功能的图像分析和处理套件(推荐使用)。Note:注意SimpleITK不支持中文,即路径中不能有中文X射线图像对应的读取1#@file:itk_p1.py2#@Time:2021/8/2816:273#@Author:wmz4importSimpleITKassitk......
  • Error response from daemon:connect: no route to host——客户端远程登录私有仓库报
    报错:[root@client~]#dockerlogin-uadmin-pHarbor12345http://192.168.11.131WARNING!Using--passwordviatheCLIisinsecure.Use--password-stdin.Errorresponsefromdaemon:Gethttps://192.168.11.131/v2/:dialtcp192.168.11.131:443:connect:norout......