这周学习了Hadoop的入门基础部分内容。
Hadoop是什么?
Hadoop是一个由Apache基金会所开发的分布式系统基础架构。
主要解决,海量数据的存储和海量数据的分析计算问题。
广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。Hadoop的三大发行版本Hadoop 三大发行版本:Apache、Cloudera、Hortonworks。Apache版本最原始(最基础)的版本,对于入门学习最好。
-
Cloudera内部集成了很多大数据框架,对应产品CDH。2008
Hortonworks文档较好,对应产品HDP。2011
Hortonworks现在已经被Cloudera公司收购,推出新的品牌CDP。Hadoop优势(4高)
1)高可靠性:Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元素或存储出现故障,也不会导致数据的丢失。
2)高扩展性:在集群间分配任务数据,可方便的扩展数以干计的节点。可以动态增加服务器
3)高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处理速度。
4)高容错性:能够自动将失败的任务重新分配。1.5 Hadoop组成,1.x 2.x 3.x区别(重点)
1.5.1 HDFS架构概述
Hadoop Distributed File System,简称HDFS,是一个分布式文件系统。
1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。
2)DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。
3)Secondarv NameNode(2nn):每隔一段时间对NameNode元数据备份。YARN架构概述
Yet Another Resource Negotiator简称YARN,另一种资源协调者,是Hadoop的资源管理器。MapReduce架构概述
MapReduce将计算过程分为两个阶段:Map和Reducee
1)Map阶段并行处理输入数据
2)Reduce 阶段对Map结果进行汇总大数据技术生态体系
1)Sqoop:Sqoop是一款开源的工具,主要用于在Hadoop、Hive与传统的数据库(MySQL)间进行数据的传递,可以将一个关系型数据库(例如:MySQL,Oracle等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
2)Flume:Flume是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;
3)Kafka:Kafka是一种高吞吐量的分布式发布订阅消息系统;
4)Spark:Spark是当前最流行的开源大数据内存计算框架。可以基于Hadoop上存储的大数据进行计算。
5)Flink:Flink是当前最流行的开源大数据内存计算框架。用于实时计算的场景较多。e
6)Oozie:Oozie是一个管理Hadoop作业(job)的工作流程调度管理系统。
7)Hbase:HBase是一个分布式的、面向列的开源数据库。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。
8)Hive:Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张
数据库表,并提供简单的SOI.杳询功能,可以将SOI.语句转换为ManRediuce任务讲行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
9)ZooKeeper:它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、分布式同步、组服务等。