首页 > 其他分享 >P3089 [USACO13NOV] Pogo-Cow S 弹簧踩高跷

P3089 [USACO13NOV] Pogo-Cow S 弹簧踩高跷

时间:2023-07-06 21:34:18浏览次数:54  
标签:p1 P3089 Cow int tr USACO13NOV lp dis fu

P3089 [USACO13NOV] Pogo-Cow S 弹簧踩高跷

洛谷题目传送门

目录

题目描述

In an ill-conceived attempt to enhance the mobility of his prize cow Bessie, Farmer John has attached a pogo stick to each of Bessie's legs. Bessie can now hop around quickly throughout the farm, but she has not yet learned how to slow down.

To help train Bessie to hop with greater control, Farmer John sets up a practice course for her along a straight one-dimensional path across his farm. At various distinct positions on the path, he places N targets on which Bessie should try to land (1 <= N <= 1000). Target i is located at position x(i), and is worth p(i) points if Bessie lands on it. Bessie starts at the location of any target of her choosing and is allowed to move in only one direction, hopping from target to target. Each hop must cover at least as much distance as the previous hop, and must land on a target.

Bessie receives credit for every target she touches (including the initial target on which she starts). Please compute the maximum number of points she can obtain.

FJ给奶牛贝西的脚安装上了弹簧,使它可以在农场里快速地跳跃,但是它还没有学会如何降低速度。

FJ觉得让贝西在一条直线的一维线路上进行练习,他在不同的目标点放置了N (1 <= N <= 1000)个目标点,目标点i在目标点x(i),该点得分为p(i)。贝西开始时可以选择站在一个目标点上,只允许朝一个方向跳跃,从一目标点跳到另外一个目标点,每次跳跃的距离至少和上一次跳跃的距离相等,并且必须跳到一个目标点。

每跳到一个目标点,贝西可以拿到该点的得分,请计算他的最大可能得分。

输入格式

* Line 1: The integer N.

* Lines 2..1+N: Line i+1 contains x(i) and p(i), each an integer in the range 0..1,000,000.

输出格式

* Line 1: The maximum number of points Bessie can receive.

样例 #1

样例输入 #1

6 
5 6 
1 1 
10 5 
7 6 
4 8 
8 10

样例输出 #1

25

提示

There are 6 targets. The first is at position x=5 and is worth 6 points, and so on.

Bessie hops from position x=4 (8 points) to position x=5 (6 points) to position x=7 (6 points) to position x=10 (5 points).

题目大意

草场上有一条直线,直线上有若干个目标点。每个目标点都有一个分值和一个坐标。现在你可以选择其中任意一个目标点开始跳,只能沿一个方向跳,并且必须跳到另一个目标点。且每次跳的距离都不能少于上一次的距离。请问你能得到的最大分值是多少?、

方法一(线段树维护dp)

考试时就是想到了这个做法,但是改了时限100ms过不了

设 \(f_{i , j}\) 表示只通过 \(j\) 步到达点 \(i\) 的最大分值。

\(j\) 会炸空间?

\(j\) 其实最多只有 \(n^2\) 种可能,乱搞一下就好了

那么:

\[f_{i , j} = Max_{k = 1}^{i - 1}(Max_{l = 0}^jf_{k , l} + p_i) \]

用线段树维护一下 \(f_{k , l}\) 就好了

code

#include <bits/stdc++.h>
#define fu(x, y, z) for (int x = y; x <= z; x++)
#define fd(x, y, z) for (int x = y; x >= z; x--)
#define LL long long
using namespace std;
const int N = 1005, M = 1000005;
struct node {
    int x, p;
} t[N];
LL ans;
int n, cnt, flg[M], p[M], p1[M], K = 1000005, len, dis[N][N];
struct Tr {
    LL val;
    int lp, rp;
} tr[M * 8];
bool cmp(node x, node y) { return x.x < y.x; }
void glp(int x) { tr[x].lp = ++len; }
void grp(int x) { tr[x].rp = ++len; }
void updata(int x) { tr[x].val = max(tr[tr[x].lp].val, tr[tr[x].rp].val); }
void change(int x, int l, int r, int pos, LL v) {
    if (l == r)
        tr[x].val = max(tr[x].val, v);
    else {
        int mid = l + r >> 1;
        if (pos <= mid) {
            if (!tr[x].lp)
                glp(x);
            change(tr[x].lp, l, mid, pos, v);
        } else {
            if (!tr[x].rp)
                grp(x);
            change(tr[x].rp, mid + 1, r, pos, v);
        }
        updata(x);
    }
}
int query(int x, int l, int r, int pos) {
    if (r <= pos)
        return tr[x].val;
    else {
        int mid = l + r >> 1, max1 = 0, max2 = 0;
        if (tr[x].lp)
            max1 = query(tr[x].lp, l, mid, pos);
        if (mid < pos && tr[x].rp)
            max2 = query(tr[x].rp, mid + 1, r, pos);
        return max(max1, max2);
    }
}
void clear(int x) {
    if (tr[x].lp)
        clear(tr[x].lp);
    if (tr[x].rp)
        clear(tr[x].rp);
    tr[x].val = tr[x].lp = tr[x].rp = 0;
}
void fans() { fu(i, 1, n) ans = max(ans, tr[i].val); }
int main() {
    scanf("%d", &n);
    fu(i, 1, n) scanf("%d%d", &t[i].x, &t[i].p);
    sort(t + 1, t + n + 1, cmp);
    fu(i, 1, n) fu(j, 1, n) dis[i][j] = abs(t[i].x - t[j].x);
    fu(i, 1, n) fu(j, 1, n) {
        if (!flg[dis[i][j]]) {
            flg[dis[i][j]] = 1;
            p[++cnt] = dis[i][j];
            K = max(K, dis[i][j]);
        }
    }
    sort(p + 1, p + cnt + 1);
    fu(i, 1, cnt) p1[p[i]] = i;
    len = n;
    fu(i, 1, n) {
        ans = max(ans, 1ll * t[i].p);
        change(i, 0, K, p1[0], 1ll * t[i].p);
    }
    int k, k2;
    fu(i, 1, n) {
        fu(j, 1, i - 1) {
            k = query(j, 0, K, p1[dis[i][j]]);
            k2 = query(i, 0, K, p1[dis[i][j]]);
            if (k + t[i].p > k2)
                change(i, 0, K, p1[dis[i][j]], k + t[i].p);
        }
    }
    fans();
    fu(i, 1, n) clear(i);
    len = n;
    fu(i, 1, n) change(i, 0, K, p1[0], t[i].p);
    fd(i, n, 1) {
        fd(j, n, i + 1) {
            k = query(j, 0, K, p1[dis[i][j]]);
            k2 = query(i, 0, K, p1[dis[i][j]]);
            if (k + t[i].p > k2)
                change(i, 0, K, p1[dis[i][j]], k + t[i].p);
        }
    }
    fans();
    printf("%lld", ans);
}

然后因为查找函数没有加等号 , 就寄掉8分。

差点就AK了

方法二 (单调队列维护dp)

设 \(f_{i , j}\) 表示从 \(j\) 到 \(i\) 的最大分值 , 用单调队列维护

好像宏定义会慢一点?

code

 #include <bits/stdc++.h>
#define LL long long
#define fu(x , y , z) for(int x = y ; x <= z ; x ++)
using namespace std;
const int N = 2005;
struct node {
    int x , p;
} t[N];
int n , k;
LL ans , f[N][N];
inline bool cmp (node x , node y) { return x.x < y.x; }
inline bool cmp1 (node x , node y) { return x . x > y.x; }
inline void fans (int flg) {
    memset (f , -0x3f , sizeof (f));
    if (flg == 1) sort (t + 1 , t + n + 1 , cmp);
    else sort (t + 1 , t + n + 1 , cmp1);
    for (int j = 1 ; j <= n ; j ++) {
        f[j][j] = t[j].p;
        for (int i = j + 1 , k = j + 1 ; i <= n ; i ++) {
            f[i][j] = f[i - 1][j] - t[i - 1].p;
            while (k > 1 && (t[j].x - t[k - 1].x) * flg <= (t[i].x - t[j].x )* flg)
                f[i][j] = max (f[i][j] , f[j][--k]);
            f[i][j] += t[i].p;
            ans = max (ans , f[i][j]);
        }
        ans = max (ans , f[j][j]);
    }
}
int main () {
    scanf ("%d" , &n);
    fu (i , 1 , n) scanf ("%d%d" , &t[i].x , &t[i].p);
    sort (t + 1 , t + n + 1 , cmp);
    fans (1);
    fans (-1);
    printf ("%lld" , ans);
    return 0;
}

标签:p1,P3089,Cow,int,tr,USACO13NOV,lp,dis,fu
From: https://www.cnblogs.com/2020fengziyang/p/17533392.html

相关文章

  • qcow2云镜像,内置启动初始化配置文件及说明
    云镜像,内置启动初始化配置文件及说明cat/etc/cloud/cloud.cfg|egrep-v"^$|^#"users:-defaultdisable_root:truepreserve_hostname:falsecloud_init_modules:-migrator-seed_random-bootcmd-write-files-growpart-resizefs-disk_setup-mounts......
  • 外汇天眼:Cowtrading Wealth──假银行专员推荐黑平台,诱骗缴佣金恶意锁账号!
    许多人都知道若想降低投资风险,最好使用合法正规的交易商,因为这样做不仅能确保个人的资金安全,还能获得来自监管机构的保护。然而,许多诈骗集团竟直接假冒知名券商,试图以鱼目混珠的方式诱骗投资人入金。不久前,一位投资人向外汇天眼表示,他在2022年12月中旬认识自称是元大银行投资女专......
  • Best Cow Fences(前缀和+特殊二分)
    之前的二分大多数都是整数类型的,今天又学到一种新型的二分,浮点数的二分,浮点数的二分可太巧妙了.且听我细细分说::OpenJudge-2018:BestCowFences#include<bits/stdc++.h>usingnamespacestd;constintN=1e5+10;intn,k;doublea[N],s[N],l,r;boolcheck(doubleu)......
  • [USACO06FEB]Treats for the Cows G/S
    [USACO06FEB]TreatsfortheCowsG/S题目描述FJhaspurchasedN(1<=N<=2000)yummytreatsforthecowswhogetmoneyforgivingvastamountsofmilk.FJsellsonetreatperdayandwantstomaximizethemoneyhereceivesoveragivenperiodtime.Th......
  • Codeforces Round #225 (Div. 2)-C. Milking cows
    原题链接C.Milkingcowstimelimitpertestmemorylimitpertestinputoutputn cowssittinginarow,numberedfrom 1 to nIahubcandecidetheorderinwhichhemilksthecows.Buthemustmilkeachcowex......
  • papamelon 344. 奶牛展览 Cow Exhibition(挑战程序设计竞赛) dp
    地址https://www.papamelon.com/problem/344贝西有权选择让哪些奶牛参加展览。由于负的智商或情商会造成负面效果,所以贝西不希望出展奶牛的智商之和小于零,或情商之和小于零。满足这两个条件下,她希望出展奶牛的智商与情商之和越大越好,请帮助贝西求出这个最大值。输入第一行:......
  • HDU 2838 Cow Sorting(树状数组)
    题意:首先每次只能交换相邻的两头牛,并且最后要求升序排列,所以最后整个序列的逆序是0,每次交换只可以消除1个逆序。(令a[i]的逆序是从1到i-1比它大的数的个数。)思路:对于某个数,要把它变成有序的,那么很容易可以推算出公式就是它自身的逆序数乘自身的值再加上它的逆序数的和,自己算算看看。......
  • P3087 [USACO13NOV]Farmer John has no Large Brown Cow S
    正解像是康托展开之类的?但是蒟蒻不会,所以用了一堆STL。对于每一列的字符串,按照字典序给它们编号。这样每一行的形容词串就变成了一堆数字。设共有\(s\)列,第\(i\)列共有\(b_i\)个不同的形容词,那么实际上每一行就是一个“第\(i\)位是\(b_i\)进制”的数。设第\(j\)行......
  • (输出路径搜索)[USACO06OCT] Cows on Skates G
    题目描述本题使用SpecialJudge。FarmerJohn把农场划分为了一个 r 行 c 列的矩阵,并发现奶牛们无法通过其中一些区域。此刻,Bessie位于坐标为 (1,1)(1,1) 的区域,并想到坐标为 (,)(r,c) 的牛棚享用晚餐。她知道,以她所在的区域为起点,每次移动至相邻的四个区域之一,总有......
  • [USACO09MAR]Cow Frisbee Team S
    [USACO09MAR]CowFrisbeeTeamS题目描述老唐最近迷上了飞盘,约翰想和他一起玩,于是打算从他家的\(N\)头奶牛中选出一支队伍。每只奶牛的能力为整数,第\(i\)头奶牛的能力为\(R_i\)。飞盘队的队员数量不能少于\(1\)、大于\(N\)。一支队伍的总能力就是所有队员能力的总和。约......