首页 > 其他分享 >实验三:OpenFlow协议分析实践

实验三:OpenFlow协议分析实践

时间:2022-09-28 12:11:53浏览次数:50  
标签:struct OpenFlow 端口 实践 header ofp uint16 实验 net

实验三:OpenFlow协议分析实践

一、实验目的

1、能够运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包;
2、能够借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制。

二、实验环境

Ubuntu 20.04 Desktop amd64

三、实验要求

(一)基本要求

1.导入到/home/用户名/学号/lab3/目录下的拓扑文件

#!/usr/bin/env python

from mininet.net import Mininet
from mininet.node import Controller, RemoteController, OVSController
from mininet.node import CPULimitedHost, Host, Node
from mininet.node import OVSKernelSwitch, UserSwitch
from mininet.node import IVSSwitch
from mininet.cli import CLI
from mininet.log import setLogLevel, info
from mininet.link import TCLink, Intf
from subprocess import call

def myNetwork():

    net = Mininet( topo=None,
                   build=False,
                   ipBase='192.168.0.0/24')

    info( '*** Adding controller\n' )
    c0=net.addController(name='c0',
                      controller=Controller,
                      protocol='tcp',
                      port=6633)

    info( '*** Add switches\n')
    s1 = net.addSwitch('s1', cls=OVSKernelSwitch)
    s2 = net.addSwitch('s2', cls=OVSKernelSwitch)

    info( '*** Add hosts\n')
    h1 = net.addHost('h1', cls=Host, ip='192.168.0.101/24', defaultRoute=None)
    h2 = net.addHost('h2', cls=Host, ip='192.168.0.102/24', defaultRoute=None)
    h3 = net.addHost('h3', cls=Host, ip='192.168.0.103/24', defaultRoute=None)
    h4 = net.addHost('h4', cls=Host, ip='192.168.0.104/24', defaultRoute=None)

    info( '*** Add links\n')
    net.addLink(h1, s1)
    net.addLink(h2, s1)
    net.addLink(h3, s2)
    net.addLink(s2, h4)
    net.addLink(s2, s1)

    info( '*** Starting network\n')
    net.build()
    info( '*** Starting controllers\n')
    for controller in net.controllers:
        controller.start()

    info( '*** Starting switches\n')
    net.get('s1').start([c0])
    net.get('s2').start([c0])

    info( '*** Post configure switches and hosts\n')

    CLI(net)
    net.stop()

if __name__ == '__main__':
    setLogLevel( 'info' )
    myNetwork()

wireshark抓包的结果截图和对应的文字说明

hello

控制器6633端口(我最高能支持OpenFlow 1.0) ---> 交换机46642端口

交换机46642端口(我最高能支持OpenFlow 1.5) ---> 控制器6633端口

于是双方建立连接,并使用OpenFlow 1.0

Features Request / Set Conig

控制器6633端口(我需要你的特征信息) ---> 交换机46642端口

控制器6633端口(请按照我给你的flag和max bytes of packet进行配置) ---> 交换机46642端口

Port_Status

当交换机端口发生变化时,告知控制器相应的端口状态。

Features Reply

交换机46642端口(这是我的特征信息,请查收) ---> 控制器6633端口

Packet_in

有两种情况:
交换机查找流表,发现没有匹配条目时
有匹配条目但是对应的action是OUTPUT=CONTROLLER时
交换机46642端口(有数据包进来,请指示)--- 控制器6633端口

Flow_mod

分析抓取的flow_mod数据包,控制器通过6633端口向交换机46642端口、交换机46644端口下发流表项,指导数据的转发处理

Packet_out

2.查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图。

3.回答问题:交换机与控制器建立通信时是使用TCP协议还是UDP协议?

TCP协议

(二)进阶要求

将抓包基础要求第2步的抓包结果对照OpenFlow源码,了解OpenFlow主要消息类型对应的数据结构定义。

1.hello

struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};
OFP_ASSERT(sizeof(struct ofp_header) == 8);

/* OFPT_HELLO.  This message has an empty body, but implementations must
 * ignore any data included in the body, to allow for future extensions. */
struct ofp_hello {
    struct ofp_header header;

2.Features Request

/* Switch features. */
struct ofp_switch_features {
    struct ofp_header header;
    uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                               a MAC address, while the upper 16-bits are
                               implementer-defined. */

    uint32_t n_buffers;     /* Max packets buffered at once. */

    uint8_t n_tables;       /* Number of tables supported by datapath. */
    uint8_t pad[3];         /* Align to 64-bits. */

    /* Features. */
    uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
    uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

    /* Port info.*/
    struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                      is inferred from the length field in
                                      the header. */
};

3.Set Conig

/* Switch configuration. */
struct ofp_switch_config {
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};

4.Port_Status

/* A physical port has changed in the datapath */
struct ofp_port_status {
    struct ofp_header header;
    uint8_t reason;          /* One of OFPPR_*. */
    uint8_t pad[7];          /* Align to 64-bits. */
    struct ofp_phy_port desc;
};

5.Features Reply

/* Switch features. */
struct ofp_switch_features {
    struct ofp_header header;
    uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                               a MAC address, while the upper 16-bits are
                               implementer-defined. */

    uint32_t n_buffers;     /* Max packets buffered at once. */

    uint8_t n_tables;       /* Number of tables supported by datapath. */
    uint8_t pad[3];         /* Align to 64-bits. */

    /* Features. */
    uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
    uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

    /* Port info.*/
    struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                      is inferred from the length field in
                                      the header. */
};

6.Packet_in

/* Why is this packet being sent to the controller? */
enum ofp_packet_in_reason {
    OFPR_NO_MATCH,          /* No matching flow. */
    OFPR_ACTION             /* Action explicitly output to controller. */
};

/* Packet received on port (datapath -> controller). */
struct ofp_packet_in {
    struct ofp_header header;
    uint32_t buffer_id;     /* ID assigned by datapath. */
    uint16_t total_len;     /* Full length of frame. */
    uint16_t in_port;       /* Port on which frame was received. */
    uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
    uint8_t pad;
    uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                               so the IP header is 32-bit aligned.  The
                               amount of data is inferred from the length
                               field in the header.  Because of padding,
                               offsetof(struct ofp_packet_in, data) ==
                               sizeof(struct ofp_packet_in) - 2. */
};

7.Flow_mod

/* Flow setup and teardown (controller -> datapath). */
struct ofp_flow_mod {
    struct ofp_header header;
    struct ofp_match match;      /* Fields to match */
    uint64_t cookie;             /* Opaque controller-issued identifier. */

    /* Flow actions. */
    uint16_t command;             /* One of OFPFC_*. */
    uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
    uint16_t hard_timeout;        /* Max time before discarding (seconds). */
    uint16_t priority;            /* Priority level of flow entry. */
    uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                     Not meaningful for OFPFC_DELETE*. */
    uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                     matching entries to include this as an
                                     output port.  A value of OFPP_NONE
                                     indicates no restriction. */
    uint16_t flags;               /* One of OFPFF_*. */
    struct ofp_action_header actions[0]; /* The action length is inferred
                                            from the length field in the
                                            header. */
};

8.Packet_out

/* Send packet (controller -> datapath). */
struct ofp_packet_out {
    struct ofp_header header;
    uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
    uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
    uint16_t actions_len;         /* Size of action array in bytes. */
    struct ofp_action_header actions[0]; /* Actions. */
    /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                     from the length field in the header.
                                     (Only meaningful if buffer_id == -1.) */
};

四、个人总结

本次实验难度不高,但是较为繁琐,需要细心查询抓包结果,耐心对比。通过这次实验,我学到了怎么运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包,复习了如何构建拓扑、使用wireshark进行抓包,熟悉了如何分析 OpenFlow协议的数据包交互过程与机制。

标签:struct,OpenFlow,端口,实践,header,ofp,uint16,实验,net
From: https://www.cnblogs.com/zouqingpeng/p/16737558.html

相关文章

  • 实验3:OpenFlow协议分析实践
    @目录一、实验目的二、实验环境三、实验要求(一)基本要求1、搭建下图所示拓扑,完成相关IP配置,并实现主机与主机之间的IP通信。ip和拓扑2、查看抓包结果,分析OpenFlow协议中......
  • 实验3:OpenFlow协议分析实践
    一、实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu......
  • 实验3:OpenFlow协议分析实践
    基础要求一、拓扑文件#!/usr/bin/envpythonfrommininet.netimportMininetfrommininet.nodeimportController,RemoteController,OVSControllerfrommininet.......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。......
  • 实验3:OpenFlow协议分析实践
    一.实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二.实验环境Ubuntu20......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践(一)基本要求1.搭建下图所示拓扑,完成相关IP配置,并实现主机与主机之间的IP通信。代码部分#!/usr/bin/envpythonfrommininet.......
  • 实验
    Inordertoaccuratelydescribethevariationofcracksectionwithcrackbreathing,whileconsideringthecomputationalcomplexityandmodelaccuracy,thecr......
  • 实验3:OpenFlow协议分析实践
    一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu20.0......
  • 16 、zedboard之纯PL按键实验
    实验基本目的:实验手册PL的流水灯,基本流程参考手册;逻辑代码解析:`timescale1ns/1ps////Company://Engineer:////CreateDate:03/11/202007:37:12PM//Design......
  • 15 、FPGA之纯PL流水灯实验
    实验基本目的:实验手册PL的流水灯,基本流程参考手册;逻辑代码解析:modulePL_Led(clk,rst_n,led);inputclk;inputrst_n;output......