Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size();
if(m == 0)
return 0;
int n = grid[0].size();
int dp[m][n];
for(int i = 0; i < m; ++i) {
for(int j = 0; j < n; ++j) {
if(i == 0 && j == 0)
dp[i][j] = grid[0][0];
else if(i == 0)
dp[i][j] = grid[i][j] + dp[i][j - 1];
else if(j == 0)
dp[i][j] = grid[i][j] + dp[i - 1][j];
else
dp[i][j] = grid[i][j] + min(dp[i - 1][j], dp[i][j - 1]);
}
}
for(int i=0;i<m;i++)
{
for(int j=0;j<n;j++)
cout<<" "<<dp[i][j];
cout<<endl;
}
return dp[m - 1][n - 1];
}
};
标签:right,int,Sum,else,Minimum,grid,path,Path,dp From: https://blog.51cto.com/u_12504263/5718750