首页 > 其他分享 >实验3:OpenFlow协议分析实践

实验3:OpenFlow协议分析实践

时间:2022-09-28 02:11:25浏览次数:45  
标签:struct OpenFlow 实践 uint32 header ofp uint16 实验 port

一、基础要求

(一)导入到/home/用户名/学号/lab3/目录下的拓扑文件

(二)wireshark抓包的结果截图和对应的文字说明;

1. hello
控制器6633端口(最高能支持OpenFlow 1.0) ---> 交换机35534端口

交换机35534端口(最高能支持OpenFlow 1.5) ---> 控制器6633端口

2. Features Request / Set Conig
控制器6633端口 ---> 交换机35534端口

控制器6633端口 ---> 交换机35534端口

3. Port_Status

4. Features Reply
交换机35534端口 ---> 控制器6633端口

5. Packet_in

6. Flow_mod

7. Packet_out

(三)查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图

(四)交换机与控制器建立通信时是使用TCP协议还是UDP协议?

TCP协议

二、进阶要求

1. hello

struct ofp_header {    
  uint8_t version;    /* OFP_VERSION. */    
  uint8_t type;       /* One of the OFPT_ constants. */    
  uint16_t length;    /* Length including this ofp_header. */    
  uint32_t xid;       
/* Transaction id associated with this packet.                             
Replies use the same id as was in the request to facilitate pairing. 
*/}; 
struct ofp_hello {    
  struct ofp_header header;
};

Features Request

2. Set Conig

struct ofp_switch_config
{
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};

3. Port_Status

/* A physical port has changed in the datapath */
  struct ofp_port_status {    
  struct ofp_header header;    
  uint8_t reason;          /* One of OFPPR_*. */    
  uint8_t pad[7];          /* Align to 64-bits. */    
  struct ofp_phy_port desc;
};

4. Features Reply

struct ofp_switch_features {
    struct ofp_header header;
    uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                               a MAC address, while the upper 16-bits are
                               implementer-defined. */
 
    uint32_t n_buffers;     /* Max packets buffered at once. */
 
    uint8_t n_tables;       /* Number of tables supported by datapath. */
    uint8_t pad[3];         /* Align to 64-bits. */
 
    /* Features. */
    uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
    uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */
 
    /* Port info.*/
    struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                      is inferred from the length field in
                                      the header. */
};
/* Description of a physical port */
struct ofp_phy_port {
    uint16_t port_no;
    uint8_t hw_addr[OFP_ETH_ALEN];
    char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */
 
    uint32_t config;        /* Bitmap of OFPPC_* flags. */
    uint32_t state;         /* Bitmap of OFPPS_* flags. */
 
    /* Bitmaps of OFPPF_* that describe features.  All bits zeroed if
     * unsupported or unavailable. */
    uint32_t curr;          /* Current features. */
    uint32_t advertised;    /* Features being advertised by the port. */
    uint32_t supported;     /* Features supported by the port. */
    uint32_t peer;          /* Features advertised by peer. */
};

5. Packet_in

struct ofp_packet_in {
    struct ofp_header header;
    uint32_t buffer_id;     /* ID assigned by datapath. */
    uint16_t total_len;     /* Full length of frame. */
    uint16_t in_port;       /* Port on which frame was received. */
    uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
    uint8_t pad;
    uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                               so the IP header is 32-bit aligned.  The
                               amount of data is inferred from the length
                               field in the header.  Because of padding,
                               offsetof(struct ofp_packet_in, data) ==
                               sizeof(struct ofp_packet_in) - 2. */
};

6. Flow_mod

struct ofp_flow_mod {
    struct ofp_header header;
    struct ofp_match match;      /* Fields to match */
    uint64_t cookie;             /* Opaque controller-issued identifier. */
 
    /* Flow actions. */
    uint16_t command;             /* One of OFPFC_*. */
    uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
    uint16_t hard_timeout;        /* Max time before discarding (seconds). */
    uint16_t priority;            /* Priority level of flow entry. */
    uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                     Not meaningful for OFPFC_DELETE*. */
    uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                     matching entries to include this as an
                                     output port.  A value of OFPP_NONE
                                     indicates no restriction. */
    uint16_t flags;               /* One of OFPFF_*. */
    struct ofp_action_header actions[0]; /* The action length is inferred
                                            from the length field in the
                                            header. */
};
struct ofp_action_header {
    uint16_t type;                  /* One of OFPAT_*. */
    uint16_t len;                   /* Length of action, including this
                                       header.  This is the length of action,
                                       including any padding to make it
                                       64-bit aligned. */
    uint8_t pad[4];
};

7. Packet_out

/* Send packet (controller -> datapath). */
struct ofp_packet_out {
    struct ofp_header header;
    uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
    uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
    uint16_t actions_len;         /* Size of action array in bytes. */
    struct ofp_action_header actions[0]; /* Actions. */
    /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                     from the length field in the header.
                                     (Only meaningful if buffer_id == -1.) */
};

三、个人心得

  本次实验的步骤简单,具体只分为两步,但是要想领悟背后的逻辑,对我来说依旧存在一定困难。
  一是在packet in pack out 阶段,与其他同学相比,所处数列较大,有一点困惑。
  二是在对实验复盘中发现无法找到post status,让我很是困惑。
  三是在进阶要求中,要对OpenFlow源码,阅读过程中知识盲点较多,需要不断查阅资料,是本次实验中比较困难的部分。
  通过本次实验,我学到了运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包以及通过对照OpenFlow源码对OpenFlow主要消息类型对应的数据结构有了初步了解。

标签:struct,OpenFlow,实践,uint32,header,ofp,uint16,实验,port
From: https://www.cnblogs.com/111l/p/16735537.html

相关文章

  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • 实验2:Open vSwitch虚拟交换机实践
    实验2:OpenvSwitch虚拟交换机实践一、实验目的能够对OpenvSwitch进行基本操作;能够通过命令行终端使用OVS命令操作OpenvSwitch交换机,管理流表;能够通过Mininet的Pytho......
  • 实验3:OpenFlow协议分析实践
    基本要求一、拓扑文件frommininet.netimportMininetfrommininet.nodeimportController,RemoteController,OVSControllerfrommininet.nodeimportCPULimitedH......
  • 实验3:OpenFlow协议分析实践
    一、实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu......
  • 实验3:OpenFlow协议分析实践
    一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu20.......
  • 实验3:OpenFlow协议分析实践
    基本要求1、拓扑文件代码(/home/k/032002225/lab3/):frommininet.netimportMininetfrommininet.nodeimportController,RemoteController,OVSControllerfrommini......
  • 实验3:OpenFlow协议分析实践
    基础要求提交导入到/home/用户名/学号/lab3/目录下的拓扑文件wireshark抓包的结果截图和对应的文字说明Hello控制器6633端口(我最高能支持OpenFlow1.0)--->交换机45......
  • 实验3:OpenFlow协议分析实践
    一、基本要求(一)拓补文件(二)抓包截图1.hello2.FeaturesRequest3.SetConig4.Port_Status5.FeaturesReply6.Packet_in7.Flow_mod8.Packet_out(三)交互图......
  • sv实验3
      验证结构    随机约束实验3相比实验2引入了随机约束,主要体现在chnl_trans类中。实验2中的数据内容由generator的get_trans函数产生,而实验3在chnl_trans类......
  • Python第四章实验报告
    一.实验项目名称:《零基础学Python》第四章的14道实例和4道实战二.实验环境:IDLE(Python3.964-bit)三.实验目的和要求:熟练掌握Python序列的应用四.实验过程:实例01输出......