首页 > 其他分享 >实验3:OpenFlow协议分析实践

实验3:OpenFlow协议分析实践

时间:2022-09-28 00:22:07浏览次数:51  
标签:struct OpenFlow 端口 实践 header ofp 实验 net port

基本要求

1、拓扑文件代码(/home/k/032002225/lab3/):

from mininet.net import Mininet
from mininet.node import Controller, RemoteController, OVSController
from mininet.node import CPULimitedHost, Host, Node
from mininet.node import OVSKernelSwitch, UserSwitch
from mininet.node import IVSSwitch
from mininet.cli import CLI
from mininet.log import setLogLevel, info
from mininet.link import TCLink, Intf
from subprocess import call

def myNetwork():

    net = Mininet( topo=None,
                   build=False,
                   ipBase='10.0.0.0/8')

    info( '*** Adding controller\n' )
    c0=net.addController(name='c0',
                      controller=Controller,
                      protocol='tcp',
                      port=6633)

    info( '*** Add switches\n')
    s1 = net.addSwitch('s1', cls=OVSKernelSwitch)
    s2 = net.addSwitch('s2', cls=OVSKernelSwitch)

    info( '*** Add hosts\n')
    h1 = net.addHost('h1', cls=Host, ip='192.168.0.101/24', defaultRoute=None)
    h2 = net.addHost('h2', cls=Host, ip='192.168.0.102/24', defaultRoute=None)
    h3 = net.addHost('h3', cls=Host, ip='192.168.0.103/24', defaultRoute=None)
    h4 = net.addHost('h4', cls=Host, ip='192.168.0.104/24', defaultRoute=None)

    info( '*** Add links\n')
    net.addLink(h1, s1)
    net.addLink(h2, s1)
    net.addLink(s1, s2)
    net.addLink(s2, h3)
    net.addLink(s2, h4)

    info( '*** Starting network\n')
    net.build()
    info( '*** Starting controllers\n')
    for controller in net.controllers:
        controller.start()

    info( '*** Starting switches\n')
    net.get('s1').start([c0])
    net.get('s2').start([c0])

    info( '*** Post configure switches and hosts\n')

    CLI(net)
    net.stop()

if __name__ == '__main__':
    setLogLevel( 'info' )
    myNetwork()

2、hello

控制器6633端口(我最高能支持OpenFlow 1.0) ---> 交换机49344端口
交换机49344端口(我最高能支持OpenFlow 1.5) ---> 控制器6633端口
于是双方建立连接,并使用OpenFlow 1.0

3、Features Request

控制器6633端口(我需要你的特征信息) ---> 交换机49344端口
控制器6633端口(请按照我给你的flag和max bytes of packet进行配置) --->交换机49344端口
⚫flag:指示交换机如何处理IP分片数据包
⚫max bytes of packet:当交换机无法处理到达的数据包时,向控制器发送如何处理的最大字节数,本实验中控制器发送的值是0x0080,即128字节。

4、Port_Status

当交换机端口发生变化时,告知控制器相应的端口状态。

5、Features Reply

交换机49344端口(这是我的特征信息,请查收) ---> 控制器6633端口

6、Packet_in

交换机49344端口(有数据包进来,请指示)--- 控制器6633端口

7、Flow_mod

分析抓取的flow_mod数据包,控制器通过6633端口向交换机49346端口、交换机49344端口 下发流表项,指导数据的转发处理

8、Packet_out

控制器6633端口(请按照我给你的action进行处理) ---> 交换机49346端口
告诉输出到交换机的2端口

9、交互图

10、交换机与控制器建立通信时是使用TCP协议还是UDP协议?

交换机与控制器建立通信时是使用TCP协议。

进阶要求

1、hello

/* Header on all OpenFlow packets. */
struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};
OFP_ASSERT(sizeof(struct ofp_header) == 8);

/* OFPT_HELLO.  This message has an empty body, but implementations must
 * ignore any data included in the body, to allow for future extensions. */
struct ofp_hello {
    struct ofp_header header;
};

2、Features Request

3、Set config

/* Switch configuration. */
struct ofp_switch_config {
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};

4、Port_Status

/* A physical port has changed in the datapath */
struct ofp_port_status {
    struct ofp_header header;
    uint8_t reason;          /* One of OFPPR_*. */
    uint8_t pad[7];          /* Align to 64-bits. */
    struct ofp_phy_port desc;
};

5、Features Reply

/* Description of a physical port */
struct ofp_phy_port {
    uint16_t port_no;
    uint8_t hw_addr[OFP_ETH_ALEN];
    char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */

    uint32_t config;        /* Bitmap of OFPPC_* flags. */
    uint32_t state;         /* Bitmap of OFPPS_* flags. */

    /* Bitmaps of OFPPF_* that describe features.  All bits zeroed if
     * unsupported or unavailable. */
    uint32_t curr;          /* Current features. */
    uint32_t advertised;    /* Features being advertised by the port. */
    uint32_t supported;     /* Features supported by the port. */
    uint32_t peer;          /* Features advertised by peer. */
};
OFP_ASSERT(sizeof(struct ofp_phy_port) == 48);

/* Switch features. */
struct ofp_switch_features {
    struct ofp_header header;
    uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                               a MAC address, while the upper 16-bits are
                               implementer-defined. */

    uint32_t n_buffers;     /* Max packets buffered at once. */

    uint8_t n_tables;       /* Number of tables supported by datapath. */
    uint8_t pad[3];         /* Align to 64-bits. */

    /* Features. */
    uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
    uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

    /* Port info.*/
    struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                      is inferred from the length field in
                                      the header. */
};

6、Packet_in

struct ofp_packet_in {
    struct ofp_header header;
    uint32_t buffer_id;     /* ID assigned by datapath. */
    uint16_t total_len;     /* Full length of frame. */
    uint16_t in_port;       /* Port on which frame was received. */
    uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
    uint8_t pad;
    uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                               so the IP header is 32-bit aligned.  The
                               amount of data is inferred from the length
                               field in the header.  Because of padding,
                               offsetof(struct ofp_packet_in, data) ==
                               sizeof(struct ofp_packet_in) - 2. */
};

7、Flow_mod

struct ofp_flow_mod {
    struct ofp_header header;
    struct ofp_match match;      /* Fields to match */
    uint64_t cookie;             /* Opaque controller-issued identifier. */

    /* Flow actions. */
    uint16_t command;             /* One of OFPFC_*. */
    uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
    uint16_t hard_timeout;        /* Max time before discarding (seconds). */
    uint16_t priority;            /* Priority level of flow entry. */
    uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                     Not meaningful for OFPFC_DELETE*. */
    uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                     matching entries to include this as an
                                     output port.  A value of OFPP_NONE
                                     indicates no restriction. */
    uint16_t flags;               /* One of OFPFF_*. */
    struct ofp_action_header actions[0]; /* The action length is inferred
                                            from the length field in the
                                            header. */
};

8、Packet_out

struct ofp_packet_out {
    struct ofp_header header;
    uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
    uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
    uint16_t actions_len;         /* Size of action array in bytes. */
    struct ofp_action_header actions[0]; /* Actions. */
    /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                     from the length field in the header.
                                     (Only meaningful if buffer_id == -1.) */
};

个人总结

这次实验主要就是利用wireshark来对OpenFlow协议数据交互过程进行抓包。相对于前几次实验来说,这次实验难度不大,就是需要比较耐心的去分析结构,还有就是在写报告的时候要用到很多的截图,这些截图是这个实验耗时的主要原因。在实验中的问题是,刚开始始终看不到flow_mod这个包,后来看到这个是一个数据包,就想到是不是没有pingall过的原因,后来pingall了一下,这个数据包就出来了。

标签:struct,OpenFlow,端口,实践,header,ofp,实验,net,port
From: https://www.cnblogs.com/su-wenwei/p/16736549.html

相关文章

  • 实验3:OpenFlow协议分析实践
    基础要求提交导入到/home/用户名/学号/lab3/目录下的拓扑文件wireshark抓包的结果截图和对应的文字说明Hello控制器6633端口(我最高能支持OpenFlow1.0)--->交换机45......
  • 实验3:OpenFlow协议分析实践
    一、基本要求(一)拓补文件(二)抓包截图1.hello2.FeaturesRequest3.SetConig4.Port_Status5.FeaturesReply6.Packet_in7.Flow_mod8.Packet_out(三)交互图......
  • sv实验3
      验证结构    随机约束实验3相比实验2引入了随机约束,主要体现在chnl_trans类中。实验2中的数据内容由generator的get_trans函数产生,而实验3在chnl_trans类......
  • Python第四章实验报告
    一.实验项目名称:《零基础学Python》第四章的14道实例和4道实战二.实验环境:IDLE(Python3.964-bit)三.实验目的和要求:熟练掌握Python序列的应用四.实验过程:实例01输出......
  • 实验3:OpenFlow协议分析实践
    基础要求一、拓扑文件#!/usr/bin/envpythonfrommininet.netimportMininetfrommininet.nodeimportController,RemoteController,OVSControllerfrommininet.......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与......
  • 实验3 OpenFlow协议分时实践
    基础实验抓包分析step1:搭建拓扑并配置相应IPstep2:Pingall并抓包step3:分析(1)hello包表示含义:控制器6633端口发送“我最高能支持OpenFlow1.0”信息给交换机43826端......
  • 实验3:OpenFlow协议分析实践
    一、实验目的1.能够运用wireshark对OpenFlow协议数据交互过程进行抓包;2.能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验要求1.基本要求(1)拓扑文件#!/usr/bin/envpythonfrommininet.netimportMininetfrommininet.nodeimportController,RemoteC......
  • Python实验报告(第四周
    一、实验目的和要求学会应用列表、元组、字典等序列;二、实验环境软件版本:Python3.1064_bit三、实验过程1、实例1:输出每日一贴(1)在IDLE中创建一个名称为tips.py的文......