首页 > 其他分享 >[数据结构]scanning line(扫描线)

[数据结构]scanning line(扫描线)

时间:2023-06-25 21:12:15浏览次数:52  
标签:scanning begin int event seg 扫描线 vx line id

scanning line(扫描线)

1.1扫描线的思想以及在几何问题上的应用(eg1,3)

二维数点

平面上有n个点(xi,yi)。

回答q个询问,每个询问给定一个矩形[X1,X2]×[Y1,Y2],询问矩形里面有多少个点。

因为有1e9的范围,我们离散化一下,我们只关心顺序,不关心具体是多少

这里相当于只需要把原来的点的坐标离散化,查询的时候直接二分找到小于等于他的第一个坐标即可。

思想:

①扫描线+容斥

②离线

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 201000;
vector<int>vx;
vector<array<int,4>>event;;
int n,q,m;
int a[N],ans[N];
int c[N];
int query(int x){//1...x
	ll s = 0;
	for(;x;x-=x&(-x))
		s += c[x];
	return s;
}
void modify(int x,int s){//a[x]+=s
	for(;x<=m;x+=x&(-x))
		c[x]+=s;
}
int main()
{
	ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
	cin>>n>>q;
	for(int i = 1;i<=n;i++)
	{
		int x,y;
		cin>>x>>y;
		vx.push_back(x);
		//y坐标,类型,x坐标
		event.push_back({y,0,x});
	}
	for(int i = 1;i<=q;i++)
	{
		int x1,x2,y1,y2;
		cin>>x1>>x2>>y1>>y2;
		//用容斥
		//y坐标,类型1-,2+,x坐标,哪一个询问
		//0,1,2的设置其实还包含了希望哪个事件先发生,坐标一样的话,我们希望先插入再查询
		event.push_back({y2,2,x2,i});
		event.push_back({y1-1,2,x1-1,i});
		event.push_back({y2,1,x1-1,i});
		event.push_back({y1-1,1,x2,i});
	}
	sort(event.begin(), event.end());
	sort(vx.begin(), vx.end());
	//去重
	vx.erase(unique(vx.begin(), vx.end()),vx.end());
	m = vx.size();
	for(auto evt:event)
	{
		if(evt[1]==0){//插入
			int y = lower_bound(vx.begin(), vx.end(),evt[2])-vx.begin()+1;//树状数组是1base的
			modify(y,1);
		}
		else{//查询<=它的最后一个位置,即第一个>它的位置-1
			int y = upper_bound(vx.begin(), vx.end(),evt[2])-vx.begin()-1+1;//树状数组是1base的
			int tmp = query(y);
			if(evt[1]==1)ans[evt[3]] -= tmp;
			else ans[evt[3]] += tmp;
		}
	}
	for(int i = 1;i<=q;i++)
		cout<<ans[i]<<'\n';
	return 0;
}

矩形面积并

矩形面积并

思路:

x坐标离散化

cnt>0覆盖,cnt=0未被覆盖

用线段树记录cnt的最小值,也就是被覆盖次数的最小的段。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 201000;
vector<int>vx;
vector<array<int,4>>event;;
int n,q,m;

struct info
{
	int minv,mincnt;
};

info operator+(const info &l,const info &r)
{
	info a;
	a.minv = min(l.minv,r.minv);
	if(l.minv==r.minv)a.mincnt = l.mincnt + r.mincnt;
	else if(l.minv<r.minv)a.mincnt = l.mincnt;
	else a.mincnt = r.mincnt;
	return a;
}

struct node{
	int t;
	info val;
}seg[N*8];

void update(int id)
{
	seg[id].val = seg[id*2].val+seg[id*2+1].val;
}

void settag(int id,int t)
{
	seg[id].val.minv = seg[id].val.minv+t;
	seg[id].t = seg[id].t + t;
}

void pushdown(int id)
{
	if(seg[id].t!=0)
	{
		settag(id*2,seg[id].t);
		settag(id*2+1,seg[id].t);
		seg[id].t = 0;
	}
}

void build(int id,int l,int r)
{
	if(l==r)
		seg[id].val = {0,vx[r]-vx[r-1]};
	else 
	{
		int mid = (l+r)>>1;
		build(id*2,l,mid);
		build(id*2+1,mid+1,r);
		update(id);
	}
}


void modify(int id,int l,int r,int x,int y,ll t){
	if(l==x&&r==y)
	{
		settag(id,t);
		return;
	}
	int mid = (l+r)/2;
	pushdown(id);
	if(y<=mid) modify(id*2,l,mid,x,y,t);
	else if(x>mid) modify(id*2+1,mid+1,r,x,y,t);
	else{
		modify(id*2,l,mid,x,mid,t),modify(id*2+1,mid+1,r,mid+1,y,t);
	}
	update(id);
}


int main()
{
	ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
	cin>>n;
	for(int i = 1;i<=n;i++)
	{
		int x1,x2,y1,y2;
		cin>>x1>>x2>>y1>>y2;
		vx.push_back(x1);
		vx.push_back(x2);
		//y坐标,类型0,x坐标
		event.push_back({y1,1,x1,x2});
		event.push_back({y2,-1,x1,x2});
	}
	sort(event.begin(), event.end());
	sort(vx.begin(), vx.end());
	//去重
	vx.erase(unique(vx.begin(), vx.end()),vx.end());
	m = vx.size()-1;//段数=点数-1
	build(1,1,m);
	int prey = 0;
	int totlen = seg[1].val.mincnt;
	ll ans = 0;
	for(auto evt:event)
	{
		int cov = totlen;
		if(seg[1].val.minv==0)
			cov = totlen - seg[1].val.mincnt;
		ans += (ll)(evt[0]-prey)*cov;
		prey = evt[0];
		int x1 = lower_bound(vx.begin(), vx.end(),evt[2])-vx.begin()+1;
		int x2 = lower_bound(vx.begin(), vx.end(),evt[3])-vx.begin();
		if(x1>x2)continue;
		modify(1,1,m,x1,x2,evt[1]);
	}
	cout<<ans<<endl;
	return 0;
}

1.2 扫描线在序列问题上的应用(eg2)

区间不同数之和

有\(n\)个数\(a1,a2,…,an\)。

有\(q\)组询问,每次给一个区间\([l,r]\),求区间里不同的数字之和,也就是说同一个数字出现多次只算一次。

思路:

①思路一:\(pri[i]\)表示\(a[i]\)上一次出现的位置(只统计第一次出现)

\(pri[i]<l\)和\(l<=i<=r\)满足这两个条件的\(ai\)之和。

转化为二维数点问题,所有限制是两维的都可以看成二维数点。

把一个点坐标看成\((i,pri[i])\),$$\begin{cases} pri[i]<l\\ l<=i<=r \end{cases} \tag{1} $$满足这两个条件的\(ai\)之和。

②思路二:for(r = 1~n)

维护\(ans[l] :[l,r]\)的答案

\(r-1——>r\) , \(ans[l]:[l,r-1]——>[l,r]\)

\(a_r\)在\([l,r-1]\)未出现,\(ans[l]+=a_r\),否则不变
比如对于\([l,r]\)一段,在\([l,p]\)上\(a_r\)出现过,在\([p+1,r]\)上没出现过,那么\(ans[p+1\)~\(r]+=a[r]\)

综上所述:我们要实现①区间加②单点查询

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 201000;
ll n,q,a[N],pos[N],ans[N];
vector<array<int,3>>qu[N];
ll c[N];
ll query(int x){//1...x
	ll s = 0;
	for(;x;x-=x&(-x))
		s += c[x];
	return s;
}
void modify(int x,ll s){//a[x]+=s
	for(;x<=n;x+=x&(-x))
		c[x]+=s;
}
int main()
{
	ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
	cin>>n>>q;
	for(int i = 1;i<=n;i++)
		cin>>a[i];

	for(int i = 1;i<=q;i++)
	{
		int l,r;
		cin>>l>>r;
		qu[r].push_back({l,i});
	}
	for(int r = 1;r<=n;r++)
	{
		int p = pos[a[r]];
		modify(p+1,a[r]);
		modify(r+1,-a[r]);
		pos[a[r]] = r;
		for(auto que:qu[r])
		{
			//ans[l]:[l,r]的答案
			ans[que[1]] = query(que[0]);
		}
	}
	for(int i = 1;i<=q;i++)
		cout<<ans[i]<<'\n';
	return 0;
}

2.权值线段树之字典树(eg4)

异或第k小

给\(n\)个数字\(a1,a2,…,an\)。

你要回答\(m\)个询问,每次给定两个数\(x,k\)询问a1 xor x,a2 xor x,…,an xor x中从小到大排序中第\(k\)小的元素。

![image-20230622163207044](C:\Users\Zhou Yanan\AppData\Roaming\Typora\typora-user-images\image-20230622163207044.png)

#include<bits/stdc++.h>
using namespace std;
const int N = 201000;
const int M = 30;//0~2^30-1
int n,m,a[N];

struct node
{
	int s[2];
	int sz;
}seg[N*32];
int tot = 0,root;

int main()
{
	cin>>n>>m;
	root = ++tot;
	for(int i = 0;i<n;i++)
	{
		int x;
		cin>>x;
		int p = root;
		for(int j = M-1;j>=0;j--)
		{
			seg[p].sz+=1;
			int w = (x>>j)&1;
			if(seg[p].s[w]==0)seg[p].s[w] = ++tot;
			p = seg[p].s[w];
		}
		seg[p].sz+=1;
	}
	for(int i = 0;i<m;i++)
	{
		int x,k;
		cin>>x>>k;
		int ans = 0;
		int p = root;
		for(int j = M-1;j>=0;j--)
		{
			int w = (x>>j)&1;
			if(seg[seg[p].s[w]].sz>=k)
			{
				p = seg[p].s[w];
			}else{
				k -= seg[seg[p].s[w]].sz;
				ans^=1<<j;
				p = seg[p].s[w^1];
			}
		}
		cout<<ans<<endl;
	}
	return 0;
}

3.扫描线与权值线段树的总和运用(eg5)

mex

有一个长度为\(n\)的数组 \(a1,a2,…,an\)。

你要回答\(q\)个询问,每次给一个区间\([l,r]\),询问这个区间内最小没有出现过的自然数。

for(r = 1~n)

\(posx:\)x最后一次出现的位置,最小的x满足pos[x]<l

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 201000;
ll n,q,a[N],pos[N],ans[N];
vector<array<int,3>>qu[N];
struct node{
	int val;
}seg[N*4];

void update(int id)
{
	seg[id].val = min(seg[id*2].val,seg[id*2+1].val);
}


void change(int id,int l,int r,int pos,int val){
	if(l==r)
	{
		seg[id].val = val;
		return;
	}
	int mid = (l+r)/2;
	if(pos<=mid)change(id*2,l,mid,pos,val);
	else change(id*2+1,mid+1,r,pos,val);
	update(id);
}

int search(int id,int l,int r,int d)
{	
	if(l==r)return l;
	int mid = (l+r)>>1;
	if(seg[id*2].val<d)return search(id*2,l,mid,d);
	else return search(id*2+1,mid+1,r,d);
}

int main()
{
	ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
	cin>>n>>q;
	for(int i = 1;i<=n;i++)
		cin>>a[i],a[i] = min(a[i],n+1);

	for(int i = 1;i<=q;i++)
	{
		int l,r;
		cin>>l>>r;
		qu[r].push_back({l,i});
	}
	for(int r = 1;r<=n;r++)
	{
		//posx :x最后一次出现的位置,
		//最小的x满足pos[x]<l
		//pos[a[r]] = r;
		change(1,0,n+1,a[r],r);
		for(auto que:qu[r])
		{
			ans[que[1]] = search(1,0,n+1,que[0]);
		}
	}
	for(int i = 1;i<=q;i++)
		cout<<ans[i]<<'\n';
	return 0;
}

标签:scanning,begin,int,event,seg,扫描线,vx,line,id
From: https://www.cnblogs.com/nannandbk/p/17503944.html

相关文章

  • 强化学习从基础到进阶-常见问题和面试必知必答[5]::梯度策略、添加基线(baseline)、优势函
    强化学习从基础到进阶-常见问题和面试必知必答[5]::梯度策略、添加基线(baseline)、优势函数、动作分配合适的分数(credit)1.核心词汇策略(policy):在每一个演员中会有对应的策略,这个策略决定了演员的后续动作。具体来说,策略就是对于外界的输入,输出演员现在应该要执行的动作。一般地,我......
  • 强化学习从基础到进阶-常见问题和面试必知必答[5]::梯度策略、添加基线(baseline)、优势函
    强化学习从基础到进阶-常见问题和面试必知必答[5]::梯度策略、添加基线(baseline)、优势函数、动作分配合适的分数(credit)1.核心词汇策略(policy):在每一个演员中会有对应的策略,这个策略决定了演员的后续动作。具体来说,策略就是对于外界的输入,输出演员现在应该要执行的动作。一般地,我们......
  • 事务超时异常:org.springframework.transaction.TransactionTimedOutException: Transa
    报错如下:代码如下:Controllerimportcom.zwh.service.impl.TimeOutService;importlombok.extern.slf4j.Slf4j;importorg.springframework.beans.factory.annotation.Autowired;importorg.springframework.web.bind.annotation.GetMapping;importorg.springframework.w......
  • Scrapy_ImagePipeline保存图片
    创建一个项目scrapystartprojectmyfrist(project_name)创建一个爬虫scrapygenspider爬虫名爬虫地址需要安装pillowpipinstallpillow报错:twisted.python.failure.FailureOpenSSL.SSL.Error解决方案pipuninstallcryptographypipinstallcryptography==36.0.2代......
  • 驱动开发:摘除InlineHook内核钩子
    在笔者上一篇文章《驱动开发:内核层InlineHook挂钩函数》中介绍了通过替换函数头部代码的方式实现Hook挂钩,对于ARK工具来说实现扫描与摘除InlineHook钩子也是最基本的功能,此类功能的实现一般可在应用层进行,而驱动层只需要保留一个读写字节的函数即可,将复杂的流程放在应用层实现是一......
  • 驱动开发:摘除InlineHook内核钩子
    在笔者上一篇文章《驱动开发:内核层InlineHook挂钩函数》中介绍了通过替换函数头部代码的方式实现Hook挂钩,对于ARK工具来说实现扫描与摘除InlineHook钩子也是最基本的功能,此类功能的实现一般可在应用层进行,而驱动层只需要保留一个读写字节的函数即可,将复杂的流程放在应用层实现是一......
  • 《Transformer Quality in Linear Time》论文解读
    会议/期刊:ICML年份:20221.VanillaTransformerBlock(MHSA+FFN)原本的Transformer的Block遵循如下的设计范式:MHSA(多头自注意力)+一层或者两层的FFN(全连接层),如下图所示。我们只考虑FFN的话,其数学表达式如下:T表示句子长度,d表示词向量维度(也表示模型隐藏层维度),e表示expandedint......
  • Jenkins + Jenkinsfile + Go自动化Pipeline进行部署
    环境准备(因内容繁琐请自行搭建或问度娘)俺也会逐步更新相关文章Jenkins环境jenkins凭据管理Pipeline语法安装钉钉插件并配置钉钉机器人linux服务器go本地目录结构(微服务)服务器文件目录/home/ubuntuJenkinsfile文件文件名为: Jenkinsfilepipeline{agentanyenvironm......
  • transformers库的使用【一】——pipeline的简单使用
    transformers库的使用使用pipelineAPI来快速使用一些预训练模型使用预训练模型最简单的方法就是使用pipeline(),transformers提供了一些任务:1、情感分析(Sentmentanalysis):分析文本是正面的还是负面的2、文本生成(inEnglish):提供一个语句,模型将生成这条语句的下一句3、命名实体识......
  • 条款02:尽量使用const、enum、inline替换define
    文中说用enum代替define,只能说算是define在定义常量时的一种替代品,不能说明两者有何优劣。所以重点还是在const和inlinevsdefine。constvsdefine:为什么建议用const而非define?define定义常量的局限性:符号是否在编译器可见。define定义的常量在预处理阶段进行宏替换,符号......