首页 > 其他分享 >基于FPGA的FSK调制解调通信系统verilog实现,包含testbench

基于FPGA的FSK调制解调通信系统verilog实现,包含testbench

时间:2023-06-23 23:33:08浏览次数:48  
标签:wire FPGA tdata FSK tvalid verilog data axis

1.算法仿真效果 vivado2019.2仿真结果如下: 1.png3.png2.png

2.算法涉及理论知识概要 频移键控是利用载波的频率变化来传递数字信息。数字频率调制是数据通信中使用较 早的一种通信方式,由于这种调制解调方式容易实现,抗噪声和抗衰减性能较强,因此在 中低速数字通信系统中得到了较为广泛的应用。

    在二进制频移键控中,幅度恒定不变的载波信号的频率随着输入码流的变化而切换(称为高音和低音,代表二进制的1 和0)。产生FSK 信号最简单的方法是根据输入的数据比特是0还是1,在两个独立的振荡器中切换。采用这种方法产生的波形在切换的时刻相位是不连续的,因此这种FSK 信号称为不连续FSK 信号。由于相位的不连续会造频谱扩展,这种FSK 的调制方式在传统的通信设备中采用较多。随着数字处理技术的不断发展,越来越多地采用连继相位FSK调制技术。目前较常用产生FSK 信号的方法是,首先产生FSK 基带信号,利用基带信号对单一载波振荡器进行频率调制。相位连续的FSK信号的功率谱密度函数最终按照频率偏移的负四次幂衰落。如果相位不连续,功率谱密度函数按照频率偏移的负二次幂衰落。

2-FSK功率谱密度的特点如下:

(1) 2FSK信号的功率谱由连续谱和离散谱两部分构成,离散谱出现在f1和f2位置;

(2) 功率谱密度中的连续谱部分一般出现双峰。若两个载频之差|f1 -f2|≤fs,则出现单峰。

PSK:在相移键控中,载波相位受数字基带信号的控制,如在二进制基带信号中为0时,载波相位为0或π,为1时载波相位为π或0。载波相位和基带信号有一一对应的关系,从而达到调制的目的。

在二进制频移键控(2FSK)中,当传送“1”码时对应于载波频率,传送“0”码时对应于载波频率。 2FSK信号波形可看作两个2ASK信号波形的合成,下图是相位连续的2FSK信号波形。

4.png

    FSK信号的解调也有非相干和相干两种,FSK信号可以看作是用两个频率源交替传输得到的,所以FSK的接收机由两个并联的ASK接收机组成。 

   FSK:频移键控是利用两个不同频率f1和f2的振荡源来代表信号1和0,用数字信号的1和0去控制两个独立的振荡源交替输出。对二进制的频移键控调制方式,其有效带宽为B=2xF+2Fb,xF是二进制基带信号的带宽也是FSK信号的最大频偏,由于数字信号的带宽即Fb值大,所以二进制频移键控的信号带宽B较大,频带利用率小。

   FSK功率谱密度的特点如下:

(1) 2FSK信号的功率谱由连续谱和离散谱两部分构成,离散谱出现在f1和f2位置;

(2) 功率谱密度中的连续谱部分一般出现双峰。若两个载频之差|f1 -f2|≤fs,则出现单峰。

3.Verilog核心程序

dds_compiler_0 dds_compiler_u2(
  .aclk    (i_clk),                                  // input wire aclk
  .aresetn (~i_rst),                            // input wire aresetn
  .s_axis_config_tvalid(1'b1),  // input wire s_axis_config_tvalid
  .s_axis_config_tdata(32'd160000000),    // input wire [31 : 0] s_axis_config_tdata
  .m_axis_data_tvalid(),      // output wire m_axis_data_tvalid
  .m_axis_data_tdata(m_axis_data_tdata2),        // output wire [31 : 0] m_axis_data_tdata
  .m_axis_phase_tvalid(),    // output wire m_axis_phase_tvalid
  .m_axis_phase_tdata()      // output wire [31 : 0] m_axis_phase_tdata
);
assign o_carrier2=m_axis_data_tdata2[15:0];   
 
 
 
 
//解调
wire signed[15:0]o_cos3;
wire signed[15:0]o_cos4;
 
wire[31:0]m_axis_data_tdata3;
dds_compiler_0 dds_compiler_u3(
  .aclk    (i_clk),                                  // input wire aclk
  .aresetn (~i_rst),                            // input wire aresetn
  .s_axis_config_tvalid(1'b1),  // input wire s_axis_config_tvalid
  .s_axis_config_tdata(32'd60000000),    // input wire [31 : 0] s_axis_config_tdata
  .m_axis_data_tvalid(),      // output wire m_axis_data_tvalid
  .m_axis_data_tdata(m_axis_data_tdata3),        // output wire [31 : 0] m_axis_data_tdata
  .m_axis_phase_tvalid(),    // output wire m_axis_phase_tvalid
  .m_axis_phase_tdata()      // output wire [31 : 0] m_axis_phase_tdata
);
assign o_cos3=m_axis_data_tdata1[15:0];   

标签:wire,FPGA,tdata,FSK,tvalid,verilog,data,axis
From: https://blog.51cto.com/matworld/6539570

相关文章