GNN是Graph Neural Network的简称,是用于学习包含大量连接的图的联结主义模型。近年来,图神经网络(GNN)在社交网络、知识图、推荐系统甚至生命科学等各个领域得到了越来越广泛的应用。GNN在对图节点之间依赖关系进行建模的强大功能,使得与图分析相关的研究领域取得了突破。当信息在图的节点之间传播时GNN会捕捉到图的独立性。
图神经网络可以简单分为5类:图卷积网络(Graph Convolution Networks,GCN)、 图注意力网络(Graph Attention Networks)、图自编码器( Graph Autoencoders)、图生成网络( Graph Generative Networks) 和图时空网络(Graph Spatial-temporal Networks)。
图神经网络功能强大,那它到底是个什么样的模型呢?经历了怎么样的发展过程?目前应用于哪些场景呢?2019年刚刚过去一个月多,在崭新的的2020年,图神经网络GNN又有哪些崭新的发展可能呢?分享一个AAAI2020详细讲解GNN的ppt,很好的回答了这些问题。
文末附330页ppt完整本下载链接。
ppt完整版下载地址
微信公众号“深度学习与NLP”回复关键字“gnn20”获取下载地址。
标签:AAAI2020,Graph,网络,神经网络,ppt,GNN,Networks,研究进展 From: https://blog.51cto.com/u_13046751/6537980