首页 > 其他分享 >深度学习/图像处理历史最全最细-网络、技巧、迭代-论文整理分享

深度学习/图像处理历史最全最细-网络、技巧、迭代-论文整理分享

时间:2023-06-23 10:34:15浏览次数:39  
标签:Conference 最细 迭代 arXiv al preprint 图像处理 et Vision


深度学习/图像处理历史最全最细-网络、技巧、迭代-论文整理分享_Computer

    本资源整理了深度学习/图像处理技术发展过程中的所有模型、优化技巧、网络结构优化、迭代过程中所有经典论文,并进行了详细的分类,按重要程度进行了仔细的划分,对于想要了解深度学习模型迭代朋友来说非常值得参考。

 

    本资源整理自网络,源地址:https://github.com/xw-hu/Reading-List

 

基础模型和技巧

    •AlexNet: MLA Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012. ⭐️⭐️⭐️⭐️⭐️

    •Dropout: Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." Journal of Machine Learning Research 15.1 (2014): 1929-1958. ⭐️⭐️⭐️⭐️

    •VGG: Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014). ⭐️⭐️⭐️⭐️⭐️

    •GoogLeNet: Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. ⭐️⭐️⭐️⭐️⭐️

    •Batch Normalization: Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv preprint arXiv:1502.03167 (2015). [Inception v2] ⭐️⭐️⭐️⭐️⭐️

    •PReLU & msra Initilization: He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." Proceedings of the IEEE international conference on computer vision. 2015. ⭐️⭐️⭐️⭐️⭐️

    •InceptionV3: Szegedy, Christian, et al. "Rethinking the inception architecture for computer vision." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. ⭐️⭐️⭐️⭐️

    •ResNet: He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. ⭐️⭐️⭐️⭐️⭐️

    •Identity ResNet: He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer International Publishing, 2016. ⭐️⭐️⭐️⭐️⭐️

    •CReLU: Shang, Wenling, et al. "Understanding and improving convolutional neural networks via concatenated rectified linear units." Proceedings of the International Conference on Machine Learning (ICML). 2016. ⭐️⭐️⭐️

    •InceptionV4 & Inception-ResNet: Szegedy, Christian, et al. "Inception-v4, inception-resnet and the impact of residual connections on learning." arXiv preprint arXiv:1602.07261 (2016). ⭐️⭐️⭐️⭐️

    •ResNeXt: Xie, Saining, et al. "Aggregated residual transformations for deep neural networks." arXiv preprint arXiv:1611.05431 (2016). ⭐️⭐️⭐️⭐️

    •Batch Renormalization: Ioffe, Sergey. "Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models." arXiv preprint arXiv:1702.03275 (2017). ⭐️⭐️⭐️⭐️

    •Xception: Chollet, François. "Xception: Deep Learning with Depthwise Separable Convolutions." arXiv preprint arXiv:1610.02357 (2016). ⭐️⭐️⭐️

    •MobileNets: Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017). ⭐️⭐️⭐️

    •DenseNet: Huang, Gao, et al. "Densely connected convolutional networks." arXiv preprint arXiv:1608.06993 (2016). ⭐️⭐️⭐️⭐️⭐️

    •PolyNet: Zhang, Xingcheng, et al. "Polynet: A pursuit of structural diversity in very deep networks." arXiv preprint arXiv:1611.05725 (2016). Slides ⭐️⭐️⭐️⭐️

    •IRNN: Le, Quoc V., Navdeep Jaitly, and Geoffrey E. Hinton. "A simple way to initialize recurrent networks of rectified linear units." arXiv preprint arXiv:1504.00941 (2015). ⭐️⭐️⭐️

    •ReNet: Visin, Francesco, et al. "ReNet: A recurrent neural network based alternative to convolutional networks." arXiv preprint arXiv:1505.00393 (2015). ⭐️⭐️⭐️⭐️

    •Non-local Neural Network: Wang, Xiaolong, Ross Girshick, Abhinav Gupta, and Kaiming He. "Non-local Neural Networks." arXiv preprint arXiv:1711.07971 (2017). ⭐️⭐️⭐️⭐️

    •Group Normalization: Wu, Yuxin, and Kaiming He. "Group normalization." In ECCV (2018). ⭐️⭐️⭐️⭐️⭐️

    •SENet: Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks."In CVPR (2018). ⭐️⭐️⭐️⭐️⭐️

    •Rethinking ImageNet Pre-training:He, Kaiming, Ross Girshick, and Piotr Dollár. "Rethinking ImageNet Pre-training." arXiv preprint arXiv:1811.08883 (2018). ⭐️⭐️⭐️⭐️

    •CBAM:Woo, Sanghyun, et al. "CBAM: Convolutional block attention module." Proceedings of the European Conference on Computer Vision (ECCV). 2018. ⭐️⭐️⭐️⭐️

    •Network generator: Saining Xie, Alexander Kirillov, Ross Girshick, Kaiming He. Exploring Randomly Wired Neural Networks for Image Recognition. arXiv:1904.01569 (2019). ⭐️⭐️⭐️⭐️⭐️

    •GCNet: Cao, Yue, et al. "GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond." arXiv preprint arXiv:1904.11492 (2019). ⭐️⭐️⭐️⭐️

 

物体检测

    •Overfeat: Sermanet, Pierre, et al. "Overfeat: Integrated recognition, localization and detection using convolutional networks." arXiv preprint arXiv:1312.6229 (2013). ⭐️⭐️⭐️⭐️

    •RCNN: Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. ⭐️⭐️⭐️⭐️⭐️

    •SPP: He, Kaiming, et al. "Spatial pyramid pooling in deep convolutional networks for visual recognition." European Conference on Computer Vision. Springer International Publishing, 2014. ⭐️⭐️⭐️⭐️⭐️

    •Fast RCNN: Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE International Conference on Computer Vision. 2015. ⭐️⭐️⭐️⭐️⭐️

    •Faster RCNN: Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems. 2015. ⭐️⭐️⭐️⭐️⭐️

    •R-CNN minus R: Lenc, Karel, and Andrea Vedaldi. "R-cnn minus r." arXiv preprint arXiv:1506.06981 (2015). ⭐️

    •End-to-end people detection in crowded scenes: Stewart, Russell, Mykhaylo Andriluka, and Andrew Y. Ng. "End-to-end people detection in crowded scenes." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. ⭐️⭐️

    •YOLO: Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. ⭐️⭐️⭐️⭐️⭐️

    •ION: Bell, Sean, et al. "Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. ⭐️⭐️⭐️⭐️

    •MultiPath: Zagoruyko, Sergey, et al. "A multipath network for object detection." arXiv preprint arXiv:1604.02135 (2016). ⭐️⭐️⭐️

    •SSD: Liu, Wei, et al. "SSD: Single shot multibox detector." European Conference on Computer Vision. Springer International Publishing, 2016. ⭐️⭐️⭐️⭐️⭐️

    •OHEM: Shrivastava, Abhinav, Abhinav Gupta, and Ross Girshick. "Training region-based object detectors with online hard example mining." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. ⭐️⭐️⭐️⭐️⭐️

    •HyperNet: Kong, Tao, et al. "HyperNet: towards accurate region proposal generation and joint object detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. ⭐️⭐️⭐️⭐️

    •SDP: Yang, Fan, Wongun Choi, and Yuanqing Lin. "Exploit all the layers: Fast and accurate cnn object detector with scale dependent pooling and cascaded rejection classifiers." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. ⭐️⭐️⭐️⭐️

    •SubCNN: Xiang, Yu, et al. "Subcategory-aware convolutional neural networks for object proposals and detection." Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on. IEEE, 2017. ⭐️⭐️⭐️

    •MSCNN: Cai, Zhaowei, et al. "A unified multi-scale deep convolutional neural network for fast object detection." European Conference on Computer Vision. Springer International Publishing, 2016. ⭐️⭐️⭐️⭐️

    •RFCN: Li, Yi, Kaiming He, and Jian Sun. "R-fcn: Object detection via region-based fully convolutional networks." Advances in Neural Information Processing Systems. 2016. ⭐️⭐️⭐️⭐️⭐️

    •Shallow Network: Ashraf, Khalid, et al. "Shallow networks for high-accuracy road object-detection." arXiv preprint arXiv:1606.01561 (2016). ⭐️⭐️

    •Is Faster R-CNN Doing Well for Pedestrian Detection: Zhang, Liliang, et al. "Is Faster R-CNN Doing Well for Pedestrian Detection?." European Conference on Computer Vision. Springer International Publishing, 2016. ⭐️⭐️

    •GCNN: Najibi, Mahyar, Mohammad Rastegari, and Larry S. Davis. "G-cnn: an iterative grid based object detector." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. ⭐️⭐️⭐️

    •LocNet: Gidaris, Spyros, and Nikos Komodakis. "Locnet: Improving localization accuracy for object detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. ⭐️⭐️⭐️

    •PVANet: Kim, Kye-Hyeon, et al. "PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection." arXiv preprint arXiv:1608.08021 (2016). ⭐️⭐️⭐️⭐️

    •FPN: Lin, Tsung-Yi, et al. "Feature Pyramid Networks for Object Detection." arXiv preprint arXiv:1612.03144 (2016). ⭐️⭐️⭐️⭐️⭐️

    •TDM: Shrivastava, Abhinav, et al. "Beyond Skip Connections: Top-Down Modulation for Object Detection." arXiv preprint arXiv:1612.06851 (2016). ⭐️⭐️⭐️⭐️

    •YOLO9000: Redmon, Joseph, and Ali Farhadi. "YOLO9000: Better, Faster, Stronger." arXiv preprint arXiv:1612.08242 (2016). ⭐️⭐️⭐️⭐️

    •Speed/accuracy trade-offs for modern convolutional object detectors: Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object detectors." arXiv preprint arXiv:1611.10012 (2016). ⭐️⭐️

    •GDB-Net: Zeng, Xingyu, et al. "Crafting GBD-Net for Object Detection." arXiv preprint arXiv:1610.02579 (2016). Slides⭐️⭐️⭐️⭐️

    •WRInception: Lee, Youngwan, et al. "Wide-Residual-Inception Networks for Real-time Object Detection." arXiv preprint arXiv:1702.01243 (2017). ⭐️

    •DSSD: Fu, Cheng-Yang, et al. "DSSD: Deconvolutional Single Shot Detector." arXiv preprint arXiv:1701.06659 (2017). ⭐️⭐️⭐️⭐️

    •A-Fast-RCNN (Hard positive generation): Wang, Xiaolong, Abhinav Shrivastava, and Abhinav Gupta. "A-fast-rcnn: Hard positive generation via adversary for object detection." arXiv preprint arXiv:1704.03414 (2017). ⭐️⭐️⭐️ code

    •RRC: Ren, Jimmy, et al. "Accurate Single Stage Detector Using Recurrent Rolling Convolution." arXiv preprint arXiv:1704.05776 (2017). ⭐️⭐️⭐️

    •Deformable ConvNets: Dai, Jifeng, et al. "Deformable Convolutional Networks." arXiv preprint arXiv:1703.06211 (2017). ⭐️⭐️⭐️⭐️

    •RSSD: Jeong, Jisoo, Hyojin Park, and Nojun Kwak. "Enhancement of SSD by concatenating feature maps for object detection." arXiv preprint arXiv:1705.09587 (2017). ⭐️⭐️

    •Perceptual GAN: Li, Jianan, et al. "Perceptual Generative Adversarial Networks for Small Object Detection." arXiv preprint arXiv:1706.05274 (2017). ⭐️⭐️⭐️

    •RetinaNet (Focal Loss): Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. "Focal Loss for Dense Object Detection." In ICCV. 2017. ⭐️⭐️⭐️⭐️⭐️

    •YOLOv3: Redmon, Joseph, and Ali Farhadi. "YOLOv3: An Incremental Improvement." arXiv preprint arXiv:1804.02767 (2018). ⭐️⭐️⭐️

    •Domain Adaptive Faster R-CNN: Chen, Yuhua, et al. "Domain adaptive faster r-cnn for object detection in the wild." In CVPR, 2018. ⭐️⭐️⭐️⭐️

    •OMNIA Faster R-CNN:Rame, Alexandre, et al. "OMNIA Faster R-CNN: Detection in the wild through dataset merging and soft distillation." arXiv preprint arXiv:1812.02611 (2018). [Omni-Supervised across different datasets for object detection] ⭐️⭐️⭐️⭐️

    •Libra R-CNN: Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., & Lin, D. (2019). Libra R-CNN: Towards Balanced Learning for Object Detection. arXiv preprint arXiv:1904.02701. ⭐️⭐️⭐️⭐️

 

图像切分

    •FCN: Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. ⭐️⭐️⭐️⭐️⭐️

    •Deconvolution Network for Segmentation: Noh, Hyeonwoo, Seunghoon Hong, and Bohyung Han. "Learning deconvolution network for semantic segmentation." Proceedings of the IEEE International Conference on Computer Vision. 2015. ⭐️⭐️⭐️

    •U-Net: Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015. ⭐️⭐️⭐️⭐️⭐️

    •CRF as RNN: Zheng, Shuai, et al. "Conditional random fields as recurrent neural networks." In ICCV. 2015. ⭐️⭐️⭐️⭐️

    •MNC: Dai, Jifeng, Kaiming He, and Jian Sun. "Instance-aware semantic segmentation via multi-task network cascades." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. ⭐️⭐️⭐️⭐️⭐️

    •InstanceFCN: Dai, Jifeng, et al. "Instance-sensitive fully convolutional networks." arXiv preprint arXiv:1603.08678 (2016). ⭐️⭐️⭐️⭐️

    •FCIS: Li, Yi, et al. "Fully convolutional instance-aware semantic segmentation." arXiv preprint arXiv:1611.07709 (2016). ⭐️⭐️⭐️⭐️⭐️

    •PSPNet: Zhao, Hengshuang, et al. "Pyramid scene parsing network." arXiv preprint arXiv:1612.01105 (2016). ⭐️⭐️⭐️

    •Deeplab v1v2: Chen, Liang-Chieh, et al. "Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs." IEEE transactions on pattern analysis and machine intelligence 40.4 (2018): 834-848. ⭐️⭐️⭐️⭐️⭐️

    •Deeplab v3: Chen, Liang-Chieh, et al. "Rethinking atrous convolution for semantic image segmentation." arXiv preprint arXiv:1706.05587 (2017). ⭐️⭐️⭐️

    •Deeplab v3+: Chen, Liang-Chieh, et al. "Encoder-decoder with atrous separable convolution for semantic image segmentation." arXiv preprint arXiv:1802.02611 (2018). ⭐️⭐️⭐️

    •Mask R-CNN: He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. "Mask r-cnn." In ICCV. 2017. ⭐️⭐️⭐️⭐️⭐️

    •Learning to Segment Every Thing (Mask^X R-CNN): Hu, Ronghang, Piotr Dollár, Kaiming He, Trevor Darrell, and Ross Girshick. "Learning to Segment Every Thing." arXiv preprint arXiv:1711.10370 (2017). ⭐️⭐️⭐️⭐️⭐️

    •PANet: Liu, Shu, et al. "Path aggregation network for instance segmentation." arXiv preprint arXiv:1803.01534 (2018). ⭐️⭐️⭐️⭐️

    •Panoptic Segmentation: Kirillov, A., He, K., Girshick, R., Rother, C., & Dollár, P. (2018). Panoptic Segmentation. arXiv preprint arXiv:1801.00868. ⭐️⭐️⭐️⭐️

    •PSANet: Zhao, Hengshuang, et al. "PSANet: Point-wise Spatial Attention Network for Scene Parsing." Proceedings of the European Conference on Computer Vision (ECCV). 2018. ⭐️⭐️⭐️⭐️ [good summary of context information]

    •OCNet: Yuan, Yuhui, and Jingdong Wang. "OCNet: Object Context Network for Scene Parsing." arXiv preprint arXiv:1809.00916 (2018). ⭐️⭐️⭐️

    •ReSeg: Visin, Francesco, et al. "Reseg: A recurrent neural network-based model for semantic segmentation." In CVPR Workshops. 2016. ⭐️⭐️

    •CCNet: Huang, Zilong, et al. "CCNet: Criss-Cross Attention for Semantic Segmentation." arXiv preprint arXiv:1811.11721 (2018). ⭐️⭐️⭐️

    •Panoptic FPN: Kirillov, A., Girshick, R., He, K., & Dollár, P. (2019). Panoptic Feature Pyramid Networks. arXiv preprint arXiv:1901.02446. ⭐️⭐️⭐️⭐️⭐️

    •Depth-aware CNN: Wang, Weiyue, and Ulrich Neumann. "Depth-aware CNN for RGB-D Segmentation." In ECCV, 2018. ⭐️⭐️⭐️⭐️⭐️

    •Mask Scoring R-CNN: Huang, Z., Huang, L., Gong, Y., Huang, C., & Wang, X. (2019). Mask Scoring R-CNN. arXiv preprint arXiv:1903.00241. ⭐️⭐️⭐️⭐️

    •DFANet: Li, H., Xiong, P., Fan, H., & Sun, J. (2019). DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation. arXiv preprint arXiv:1904.02216. ⭐️⭐️

    •TensorMask:Chen, X., Girshick, R., He, K., & Dollár, P. (2019). TensorMask: A Foundation for Dense Object Segmentation. arXiv preprint arXiv:1903.12174. ⭐️⭐️⭐️⭐️

    •DADA: Vu, Tuan-Hung, et al. "DADA: Depth-aware Domain Adaptation in Semantic Segmentation." arXiv preprint arXiv:1904.01886 (2019). ⭐️⭐️⭐️⭐️

    •CFNet:Zhang, Hang, et al. "Co-Occurrent Features in Semantic Segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. ⭐️⭐️⭐️

    •SSAP: Gao, Naiyu, et al. "SSAP: Single-shot instance segmentation with affinity pyramid." Proceedings of the IEEE International Conference on Computer Vision. 2019. ⭐️⭐️⭐️

    •FCOS: Tian, Zhi, et al. "FCOS: Fully Convolutional One-Stage Object Detection." arXiv preprint arXiv:1904.01355 (2019). ⭐️⭐️⭐️⭐️⭐️

    •EmbedMask: Ying, H., Huang, Z., Liu, S., Shao, T., & Zhou, K. (2019). EmbedMask: Embedding Coupling for One-stage Instance Segmentation. arXiv preprint arXiv:1912.01954. ⭐️⭐️⭐️⭐️⭐️

 

弱监督学习

    •Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning: Cinbis, Ramazan Gokberk, Jakob Verbeek, and Cordelia Schmid. "Weakly supervised object localization with multi-fold multiple instance learning." IEEE transactions on pattern analysis and machine intelligence 39.1 (2017): 189-203. ⭐️⭐️⭐️

    •Weakly Supervised Deep Detection Networks: Bilen, Hakan, and Andrea Vedaldi. "Weakly supervised deep detection networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. ⭐️⭐️⭐️⭐️

    •Weakly- and Semi-Supervised Learning: Papandreou, George, et al. "Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation." Proceedings of the IEEE International Conference on Computer Vision. 2015. ⭐️⭐️⭐️⭐️

    •Image-level to pixel-level labeling: Pinheiro, Pedro O., and Ronan Collobert. "From image-level to pixel-level labeling with convolutional networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

    •Weakly Supervised Localization using Deep Feature Maps: Bency, Archith J., et al. "Weakly supervised localization using deep feature maps." arXiv preprint arXiv:1603.00489 (2016).

    •WELDON: Durand, Thibaut, Nicolas Thome, and Matthieu Cord. "Weldon: Weakly supervised learning of deep convolutional neural networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.

    •WILDCAT: Durand, Thibaut, et al. "WILDCAT: Weakly Supervised Learning of Deep ConvNets for Image Classification, Pointwise Localization and Segmentation." The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.

    •SGDL: Lai, Baisheng, and Xiaojin Gong. "Saliency guided dictionary learning for weakly-supervised image parsing." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.

 

无监督学习

    •Learning Features by Watching Objects Move: Pathak, Deepak, et al. "Learning Features by Watching Objects Move." arXiv preprint arXiv:1612.06370 (2016). ⭐️⭐️⭐️⭐️⭐️

    •SimGAN: Shrivastava, Ashish, et al. "Learning from simulated and unsupervised images through adversarial training." arXiv preprint arXiv:1612.07828 (2016). ⭐️⭐️⭐️

    •OPN: Lee, Hsin-Ying, et al. "Unsupervised Representation Learning by Sorting Sequences." arXiv preprint arXiv:1708.01246 (2017). ⭐️⭐️⭐️

    •Transitive Invariance for Self-supervised Visual Representation Learning: Wang, Xiaolong, et al. "Transitive Invariance for Self-supervised Visual Representation Learning" Proceedings of the IEEE International Conference on Computer Vision. 2017. ⭐️⭐️⭐️ code

    •Omni-Supervised Learning: Radosavovic, I., Dollár, P., Girshick, R., Gkioxari, G., & He, K. Data Distillation: Towards Omni-Supervised Learning. In CVPR, 2018. ⭐️⭐️⭐️⭐️⭐️

 

显著性检测

    •DHSNet: Liu, Nian, and Junwei Han. "Dhsnet: Deep hierarchical saliency network for salient object detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. ⭐️⭐️⭐️⭐️

    •RFCN: Wang, Linzhao, et al. "Saliency detection with recurrent fully convolutional networks." European Conference on Computer Vision. Springer International Publishing, 2016. ⭐️⭐️⭐️⭐️

    •RACDNN: Kuen, Jason, Zhenhua Wang, and Gang Wang. "Recurrent attentional networks for saliency detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. ⭐️⭐️⭐️⭐️

    •NLDF: Luo, Zhiming, et al. "Non-Local Deep Features for Salient Object Detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. ⭐️⭐️⭐️

    •DSS: Hou, Qibin, et al. "Deeply supervised salient object detection with short connections." arXiv preprint arXiv:1611.04849 (2016). ⭐️⭐️⭐️⭐️

    •MSRNet: Li, Guanbin, et al. "Instance-Level Salient Object Segmentation." arXiv preprint arXiv:1704.03604 (2017). ⭐️⭐️⭐️⭐️

    •Amulet: Zhang, Pingping, et al. "Amulet: Aggregating Multi-level Convolutional Features for Salient Object Detection." arXiv preprint arXiv:1708.02001 (2017). ⭐️⭐️⭐️⭐️

    •UCF: Zhang, Pingping, et al. "Learning Uncertain Convolutional Features for Accurate Saliency Detection." arXiv preprint arXiv:1708.02031 (2017). ⭐️⭐️⭐️⭐️

    •SRM: Wang, Tiantian, et al. "A Stagewise Refinement Model for Detecting Salient Objects in Images." In ICCV. 2017. ⭐️⭐️⭐️⭐️

    •S4Net: Fan, Ruochen, et al. "$ S^ 4$ Net: Single Stage Salient-Instance Segmentation." arXiv preprint arXiv:1711.07618 (2017). ⭐️⭐️⭐️⭐️⭐️

    •Deep Edge-Aware Saliency Detection:Zhang, Jing, Yuchao Dai, Fatih Porikli, and Mingyi He. "Deep Edge-Aware Saliency Detection." arXiv preprint arXiv:1708.04366 (2017). ⭐️⭐️⭐️

    •Bi-Directional Message Passing Model: Zhang, Lu, et al. "A Bi-Directional Message Passing Model for Salient Object Detection." In CVPR. 2018. ⭐️⭐️⭐️

    •PiCANet: Liu, Nian, Junwei Han, and Ming-Hsuan Yang. "PiCANet: Learning Pixel-wise Contextual Attention for Saliency Detection." In CVPR. 2018. ⭐️⭐️⭐️⭐️⭐️

    •Detect Globally, Refine Locally: A Novel Approach to Saliency Detection: Wang, Tiantian, et al. "Detect Globally, Refine Locally: A Novel Approach to Saliency Detection." In CVPR. 2018. ⭐️⭐️⭐️

    •PAGRN:Zhang, Xiaoning, et al. "Progressive Attention Guided Recurrent Network for Salient Object Detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. ⭐️⭐️⭐️

    •Reverse Attention for Salient Object Detection: Chen, Shuhan, et al. "Reverse Attention for Salient Object Detection." In ECCV, 2018. ⭐️⭐️

    •CA-Fuse: Chen, Hao, and Youfu Li. "Progressively Complementarity-Aware Fusion Network for RGB-D Salient Object Detection." In CVPR. 2018. ⭐️⭐️⭐️

    •SOC dataset: Fan, Deng-Ping, et al. "Salient objects in clutter: Bringing salient object detection to the foreground." In ECCV. 2018. ⭐️⭐️⭐️⭐️⭐️ [complex dataset + instance level]

    •DNA: Liu, Yun, et al. "DNA: Deeply-supervised Nonlinear Aggregation for Salient Object Detection." arXiv preprint arXiv:1903.12476 (2019). ⭐️⭐️⭐️

    •SE2Net:Zhou, S., Wang, J., Wang, F., & Huang, D. SE2Net: Siamese Edge-Enhancement Network for Salient Object Detection. ⭐️⭐️⭐️⭐️⭐️

    •PFAN: Zhao, T., & Wu, X. (2019). Pyramid Feature Selective Network for Saliency detection. In CVPR 2019. ⭐️⭐️

    •PoolNet: Liu, Jiang-Jiang, et al. "A Simple Pooling-Based Design for Real-Time Salient Object Detection." In CVPR 2019. ⭐️⭐️⭐️⭐️

 

注意力机制

    •SRN: Zhu, Feng, et al. "Learning Spatial Regularization with Image-level Supervisions for Multi-label Image Classification." arXiv preprint arXiv:1702.05891 (2017). ⭐️⭐️⭐️⭐️

    •Zoom-in-Net: Wang, Zhe, et al. "Zoom-in-Net: Deep Mining Lesions for Diabetic Retinopathy Detection." arXiv preprint arXiv:1706.04372 (2017). ⭐️⭐️⭐️⭐️

    •Multi-context attention: Chu, Xiao, et al. "Multi-context attention for human pose estimation." arXiv preprint arXiv:1702.07432 (2017). ⭐️⭐️⭐️

 

深度信息和立体视觉

    •HFM-Net: Zeng, J., Tong, Y., Huang, Y., Yan, Q., Sun, W., Chen, J., & Wang, Y. (2019). Deep Surface Normal Estimation with Hierarchical RGB-D Fusion. arXiv preprint arXiv:1904.03405. ⭐️⭐️⭐️

    •MADNet: Tonioni, Alessio, et al. "Real-time self-adaptive deep stereo." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. ⭐️⭐️⭐️⭐️ (offline domain adaption)

    •Geometry-Aware Distillation: Jiao, Jianbo, et al. "Geometry-Aware Distillation for Indoor Semantic Segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. ⭐️⭐️⭐️

 

阴影检测与消除

    •DeshadowNet: Qu, Liangqiong, et al. "DeshadowNet: A Multi-context Embedding Deep Network for Shadow Removal." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. ⭐️⭐️⭐️

    •scGAN: Nguyen, Vu, et al. "Shadow Detection with Conditional Generative Adversarial Networks." In ICCV. 2017. ⭐️⭐️

    •Patched CNN: Hosseinzadeh, Sepideh, Moein Shakeri, and Hong Zhang. "Fast Shadow Detection from a Single Image Using a Patched Convolutional Neural Network." arXiv preprint arXiv:1709.09283 (2017). ⭐️

    •ST-CGAN: Wang, Jifeng, et al. "Stacked Conditional Generative Adversarial Networks for Jointly Learning Shadow Detection and Shadow Removal." arXiv preprint arXiv:1712.02478 (2017). ⭐️⭐️ (ISTD dataset)

    •A+D Net: Le, Hieu, et al. "A+ D net: Training a shadow detector with adversarial shadow attenuation." Proceedings of the European Conference on Computer Vision (ECCV). 2018. ⭐️⭐️⭐️

    •Lazy annotation for immature SBU:Vicente, Yago, et al. "Noisy label recovery for shadow detection in unfamiliar domains." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. ⭐️⭐️⭐️

    •StackedCNN + SBU: Vicente, Tomás F. Yago, et al. "Large-scale training of shadow detectors with noisily-annotated shadow examples." European Conference on Computer Vision. Springer, Cham, 2016. ⭐️⭐️⭐️⭐️ (SBU dataset)

    •CPAdv-Net: Mohajerani, Sorour, and Parvaneh Saeedi. "Shadow Detection in Single RGB Images Using a Context Preserver Convolutional Neural Network Trained by Multiple Adversarial Examples." IEEE Transactions on Image Processing (2019). ⭐️⭐️

    •Color Constancy: Sidorov, Oleksii. "Conditional GANs for Multi-Illuminant Color Constancy: Revolution or Yet Another Approach?." CVPR workshop, 2019. ⭐️⭐️

    •DSDNet: Zheng, Quanlong, et al. "Distraction-aware Shadow Detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. ⭐️⭐️⭐️⭐️

    •ARGAN: Ding, Bin, et al. "ARGAN: Attentive Recurrent Generative Adversarial Network for Shadow Detection and Removal." In ICCV, (2019). ⭐️⭐️⭐️

 

图像修复

    •DRRN: Tai, Ying, Jian Yang, and Xiaoming Liu. "Image super-resolution via deep recursive residual network." The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. ⭐️⭐️⭐️⭐️

    •DID-MDN: Zhang, He, and Vishal M. Patel. "Density-aware Single Image De-raining using a Multi-stream Dense Network." arXiv preprint arXiv:1802.07412 (2018). ⭐️⭐️

    •IDN: Hui, Zheng, Xiumei Wang, and Xinbo Gao. "Fast and Accurate Single Image Super-Resolution via Information Distillation Network." In CVPR. 2018. ⭐️⭐️⭐️

    •SFT-GAN: Wang, X., Yu, K., Dong, C., & Loy, C. C. (2018). Recovering realistic texture in image super-resolution by deep spatial feature transform. In CVPR. 2018. ⭐️⭐️⭐️

    •Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring:Nah, Seungjun, Tae Hyun Kim, and Kyoung Mu Lee. "Deep multi-scale convolutional neural network for dynamic scene deblurring." In CVPR, 2017. ⭐️⭐️⭐️

    •Enhanced Deep Residual Networks for Single Image Super-Resolution: Lim, Bee, et al. "Enhanced deep residual networks for single image super-resolution." The CVPR workshops, 2017. ⭐️

    •AGAN for Raindrop Removal: Qian, Rui, et al. "Attentive Generative Adversarial Network for Raindrop Removal from A Single Image." In CVPR. 2018. ⭐️⭐️⭐️⭐️⭐️

    •DCPDN: Zhang, He, and Vishal M. Patel. "Densely connected pyramid dehazing network." In CVPR, 2018. ⭐️⭐️⭐️

    •GFN: Ren, W., Ma, L., Zhang, J., Pan, J., Cao, X., Liu, W., & Yang, M. H. (2018). Gated fusion network for single image dehazing. In CVPR, 2018. ⭐️⭐️⭐️⭐️

    •SIDCGAN: Li, Runde, et al. "Single Image Dehazing via Conditional Generative Adversarial Network." In CVPR, 2018. ⭐️⭐️

    •Dehaze Benchmark: Li, Boyi, et al. "Benchmarking Single Image Dehazing and Beyond." IEEE Transactions on Image Processing (2018). ⭐️⭐️⭐️⭐️⭐️

    •Cityscapes + Haze: Sakaridis, Christos, Dengxin Dai, and Luc Van Gool. "Semantic foggy scene understanding with synthetic data." International Journal of Computer Vision (2018): 1-20. ⭐️⭐️⭐️⭐️⭐️

    •RESCAN: Li, Xia, et al. "Recurrent Squeeze-and-Excitation Context Aggregation Net for Single Image Deraining." European Conference on Computer Vision. Springer, Cham, 2018. ⭐️⭐️⭐️

    •UD-GAN: Jin, Xin, et al. "Unsupervised Single Image Deraining with Self-supervised Constraints." arXiv preprint arXiv:1811.08575 (2018). ⭐️⭐️⭐️⭐️⭐️

    •Deep Tree-Structured Fusion Model: Fu, Xueyang, et al. "A Deep Tree-Structured Fusion Model for Single Image Deraining." arXiv preprint arXiv:1811.08632 (2018). ⭐️⭐️

    •Dual CNN: Pan, J., Liu, S., Sun, D., Zhang, J., Liu, Y., Ren, J., ... & Yang, M. H. Learning Dual Convolutional Neural Networks for Low-Level Vision. In CVPR, 2018 (pp. 3070-3079). ⭐️⭐️⭐️

    •RAM: Kim, Jun-Hyuk, et al. "RAM: Residual Attention Module for Single Image Super-Resolution." arXiv preprint arXiv:1811.12043 (2018). ⭐️⭐️⭐️

    •DNSR (Bi-cycle GAN): Zhao, Tianyu, et al. "Unsupervised Degradation Learning for Single Image Super-Resolution." arXiv preprint arXiv:1812.04240 (2018). ⭐️⭐️⭐️⭐️⭐️

    •Cycle-Defog2Refog:Liu, Wei, et al. "End-to-End Single Image Fog Removal using Enhanced Cycle Consistent Adversarial Networks." arXiv preprint arXiv:1902.01374 (2019). ⭐️⭐️

    •SPANet:Tianyu Wang, Xin Yang, Ke Xu, Shaozhe Chen, Qiang Zhang, Rynson W.H. Lau. "Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset." In CVPR 2019. ⭐️⭐️⭐️⭐️

    •remove rain streaks and rain accumulation:Ruoteng Li, Loong-Fah Cheong, and Robby T. Tan. "Heavy Rain Image Restoration: Integrating Physics Model and Conditional Adversarial Learning." In CVPR 2019. ⭐️⭐️⭐️⭐️⭐️

    •Rain O’er Me: Huangxing Lin, Yanlong Li, Xinghao Ding, Weihong Zeng, Yue Huang, John Paisley: "Rain O’er Me: Synthesizing real rain to derain with data distillation." arXiv preprint arXiv:1904.04605 (2019). ⭐️⭐️⭐️⭐️

    •RNAN: Zhang, Y., Li, K., Li, K., Zhong, B., & Fu, Y. (2019). Residual Non-local Attention Networks for Image Restoration. arXiv preprint arXiv:1903.10082. ⭐️⭐️⭐️⭐️⭐️

    •Perceptual GAN loss + TV loss:Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., ... & Shi, W. (2017). Photo-realistic single image super-resolution using a generative adversarial network. In CVPR (pp. 4681-4690).(code) ⭐️⭐️⭐️⭐️⭐️

    •PReNet: Ren, Dongwei, et al. "Progressive Image Deraining Networks: A Better and Simpler Baseline." In CVPR, 2019. ⭐️⭐️⭐️

    •Zoom to Learn, Learn to Zoom: Zhang, Xuaner, et al. "Zoom to Learn, Learn to Zoom." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. ⭐️⭐️⭐️⭐️

    •Derain Beachmark: Li, Siyuan, et al. "Single image deraining: A comprehensive benchmark analysis." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. ⭐️⭐️⭐️

    •Dual residual block: Liu, Xing, et al. "Dual Residual Networks Leveraging the Potential of Paired Operations for Image Restoration." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. ⭐️⭐️⭐️

    •Semi-supervised Transfer Learning for Image Rain Removal: Wei, Wei, et al. "Semi-Supervised Transfer Learning for Image Rain Removal." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. ⭐️⭐️⭐️⭐️

    •UMRL:Yasarla, Rajeev, and Vishal M. Patel. "Uncertainty Guided Multi-Scale Residual Learning-using a Cycle Spinning CNN for Single Image De-Raining." CVPR 2019. ⭐️⭐️⭐️⭐️

    •NASNet: Qin, Xu, and Zhilin Wang. "NASNet: A Neuron Attention Stage-by-Stage Net for Single Image Deraining." arXiv preprint arXiv:1912.03151 (2019). ⭐️⭐️⭐️⭐️

 

图像合成

    •Let there be Color!: Iizuka, Satoshi, Edgar Simo-Serra, and Hiroshi Ishikawa. "Let there be color!: joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification." ACM Transactions on Graphics (TOG) 35.4 (2016): 110. ⭐️⭐️⭐️⭐️⭐️

    •Colorful Image Colorization: Zhang, Richard, Phillip Isola, and Alexei A. Efros. "Colorful image colorization." European Conference on Computer Vision. Springer, Cham, 2016. ⭐️⭐️⭐️⭐️

    •Neural Style: Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "A neural algorithm of artistic style." arXiv preprint arXiv:1508.06576 (2015). ⭐️⭐️⭐️⭐️⭐️

    •Texture Synthesis: Gatys, Leon, Alexander S. Ecker, and Matthias Bethge. "Texture synthesis using convolutional neural networks." Advances in Neural Information Processing Systems. 2015. ⭐️⭐️⭐️⭐️

    •Semantic Annotation Artwork: Champandard, Alex J. "Semantic style transfer and turning two-bit doodles into fine artworks." arXiv preprint arXiv:1603.01768 (2016). ⭐️⭐️⭐️

    •MRC+CNN Image Synthesis: Li, Chuan, and Michael Wand. "Combining markov random fields and convolutional neural networks for image synthesis." In CVPR. 2016. ⭐️⭐️⭐️⭐️

    •More Experiments on Neural Style: Novak, Roman, and Yaroslav Nikulin. "Improving the neural algorithm of artistic style." arXiv preprint arXiv:1605.04603 (2016). ⭐️⭐️

    •Deep Photo Style Transfer: Luan, Fujun, et al. "Deep photo style transfer." In CVPR. 2017. ⭐️⭐️⭐️⭐️⭐️

 

计算影像

    •Multi-Illumination Dataset: Murmann, Lukas, et al. "A Dataset of Multi-Illumination Images in the Wild." Proceedings of the IEEE International Conference on Computer Vision. 2019. ⭐️⭐️⭐️⭐️⭐️

    •WESPE: Ignatov, Andrey, et al. "WESPE: weakly supervised photo enhancer for digital cameras." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2018. ⭐️⭐️⭐️

 

GAN

    •GAN: Goodfellow, Ian, et al. "Generative adversarial nets." In NIPS. 2014. ⭐️⭐️⭐️⭐️⭐️

    •cGAN: Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets." arXiv preprint arXiv:1411.1784 (2014). ⭐️⭐️⭐️⭐️⭐️

    •Image-to-Image Translation with Conditional Adversarial Networks: Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." arXiv preprint (2017). ⭐️⭐️⭐️⭐️⭐️

    •cycleGAN:Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." arXiv preprint (2017). ⭐️⭐️⭐️⭐️⭐️

    •StartGAN: Choi, Yunjey, et al. "Stargan: Unified generative adversarial networks for multi-domain image-to-image translation." In CVPR 2018. ⭐️⭐️⭐️⭐️

    •E-GAN: Wang, C., Xu, C., Yao, X., & Tao, D. (2018). Evolutionary Generative Adversarial Networks. arXiv preprint arXiv:1803.00657. ⭐️⭐️⭐️⭐️

    •DCGAN: Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015). ⭐️⭐️⭐️⭐️

    •GANtruth:Bujwid, Sebastian, et al. "GANtruth-an unpaired image-to-image translation method for driving scenarios." arXiv preprint arXiv:1812.01710 (2018). ⭐️⭐️⭐️

 

AR/VR

    •Indoor Lighting Estimation: Garon, Mathieu, et al. "Fast Spatially-Varying Indoor Lighting Estimation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. ⭐️⭐️⭐️

    Person Re-ID

    •IANet: Hou, Ruibing, et al. "Interaction-And-Aggregation Network for Person Re-Identification." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. ⭐️⭐️⭐️⭐️⭐️

    •AlignedReID: Zhang, Xuan, et al. "AlignedReID: Surpassing human-level performance in person re-identification." arXiv preprint arXiv:1711.08184 (2017). ⭐️⭐️⭐️⭐️⭐️

 

知识抽取

    •Knowledge Distillation: Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531. ⭐️⭐️⭐️⭐️⭐️

    •Deep Mutual Learning: Zhang, Ying, et al. "Deep mutual learning." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. ⭐️⭐️⭐️⭐️⭐️

    •Cooperative learning: Batra, Tanmay, and Devi Parikh. "Cooperative learning with visual attributes." arXiv preprint arXiv:1705.05512 (2017). ⭐️⭐️⭐️

    •Deeply-supervised Knowledge Synergy: Sun, D., Yao, A., Zhou, A., & Zhao, H. (2019). Deeply-supervised Knowledge Synergy. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 6997-7006).⭐️⭐️⭐️⭐️⭐️

    •ONE: Lan, Xu, Xiatian Zhu, and Shaogang Gong. "Knowledge distillation by On-the-fly Native Ensemble." Proceedings of the 32nd International Conference on Neural Information Processing Systems. Curran Associates Inc., 2018. ⭐️⭐️⭐️⭐️⭐️

    •Segmentation Distillation: Liu, Yifan, et al. "Structured Knowledge Distillation for Semantic Segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. ⭐️⭐️⭐️⭐️

 

不确定性

    •aleatoric uncertainty and epistemic uncertainty: Kendall, Alex, and Yarin Gal. "What uncertainties do we need in bayesian deep learning for computer vision?." Advances in neural information processing systems. 2017. ⭐️⭐️⭐️⭐️⭐️

    •Learning Model Confidence:Charles Corbière, Nicolas Thome, Avner Bar-Hen, Matthieu Cord, Patrick Pérez. "Addressing Failure Prediction by Learning Model Confidence" NeurIPS, 2019. ⭐️⭐️⭐️⭐️

传统方法

    •Rolling Guidance Filter: Zhang, Q., Shen, X., Xu, L., & Jia, J. Rolling guidance filter. In ECCV, 2014. ⭐️⭐️⭐️⭐️⭐️

深度学习/图像处理历史最全最细-网络、技巧、迭代-论文整理分享_Computer_02

标签:Conference,最细,迭代,arXiv,al,preprint,图像处理,et,Vision
From: https://blog.51cto.com/u_13046751/6537324

相关文章

  • 爆火的2022版腾讯Android面试手册,最新最细致,终于拿到手了
    据腾讯HR部门6月8号发布的最新信息,2022年6月Android开发岗位数将同比增长21%,伴随应届生求职季的到来,想进腾讯的小伙伴竞争会异常激烈。面试的深度和难度将不断增加,很多想进腾讯的朋友都在问,如何准备才能顺利拿下offer?第一章Java基础静态内部类和非静态内部类的比较多态的理解与应......
  • 全网最细的CMake教程!(强烈建议收藏)——转载知乎
    全网最细的CMake教程!(强烈建议收藏)Linux嵌入式知乎原文网址——https://zhuanlan.zhihu.com/p/534439206  1,104人赞同了该文章​目录收起▌入门案例:单个源文件▌编写CMakeLists.txt▌编译项目▌多个源文件▌同一目......
  • 基于matlab的车牌识别系统的研究,图像处理。 基于matlab的
    基于matlab的车牌识别系统的研究,图像处理。基于matlab的车牌识别系统的研究。1:有完整运行代码可以验证2:有完成配套资料,可以直接用。ID:7959598308655028......
  • 基于matlab图像处理 用gui集成多种方法处理图像 增加暗度,边缘锐化,
    基于matlab图像处理用gui集成多种方法处理图像增加暗度,边缘锐化,真彩色增强,伪彩色增强,直方图均衡化,理想低通滤波等等ID:8934598469174023......
  • Python 迭代器和生成器
    Python迭代器和生成器1、迭代器迭代器是访问集合元素的一种方式。迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退,迭代器仅仅在迭代到某个元素时才计算该元素,而在这之前或之后,元素可以不存在或者被销毁。这个特点使得它特别适合用于......
  • MongoDB批量导入Redis优化迭代笔记
    背景统计最近五天所有content信息的正文字节数(正文字段占用较多),然后根据这个大小,推送存在redis要配置多少的内存。统计方法1.在mongodb中查询db.content_.aggregate([{$match:{updatetime:{$gte:1686134400000,//对应日期"2023-06-07T00:00:00Z"的......
  • 强化学习从基础到进阶-常见问题和面试必知必答[2]:马尔科夫决策、贝尔曼方程、动态规划
    强化学习从基础到进阶-常见问题和面试必知必答[2]:马尔科夫决策、贝尔曼方程、动态规划、策略价值迭代1.马尔科夫决策核心词汇马尔可夫性质(Markovproperty,MP):如果某一个过程未来的状态与过去的状态无关,只由现在的状态决定,那么其具有马尔可夫性质。换句话说,一个状态的下一个状态......
  • 强化学习从基础到进阶-常见问题和面试必知必答[2]:马尔科夫决策、贝尔曼方程、动态规划
    强化学习从基础到进阶-常见问题和面试必知必答[2]:马尔科夫决策、贝尔曼方程、动态规划、策略价值迭代1.马尔科夫决策核心词汇马尔可夫性质(Markovproperty,MP):如果某一个过程未来的状态与过去的状态无关,只由现在的状态决定,那么其具有马尔可夫性质。换句话说,一个状态的下一个状态......
  • 基于fpga的直方图均衡 fpga图像处理 fpga开发实现一张rgb565分辨率300*200的图像的
    基于fpga的直方图均衡fpga图像处理fpga开发实现一张rgb565分辨率300*200的图像的直方图均衡化,主图为均衡后图像,副图为原图,由于原图像的对比度非常低,所以显示地并不清楚,也可以看出,经过处理后的图像对比度显著提高,使得图像清晰。基于FPGA的直方图均衡是一种使用FPGA进行图像处理......
  • PACS/RIS系统源码,提供先进3D图像处理和算法
    PACS/RIS系统可实现检查预约、病人信息登记、计算机阅片、电子报告书写、胶片打印、数据备份等一系列满足影像科室日常工作的功能。登记系统实现与HIS系统的连接,从HIS系统提取患者相关信息后,登记病人资料,并可扫描检查申请单;实现DICMWRKLIST服务,在检查登记后,自动将中文信息转换为英......