首页 > 其他分享 >基于 Wav2Lip-GFPGAN 深度学习模型的数字人Demo

基于 Wav2Lip-GFPGAN 深度学习模型的数字人Demo

时间:2023-06-18 21:34:15浏览次数:75  
标签:GitHub Users Demo Documents wav2lip GFPGAN Wav2Lip


写在前面


  • 工作中遇到简单整理
  • 博文为 Wav2Lip-GFPGAN 环境搭建运行的 Demo
  • 理解不足小伙伴帮忙指正

对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是对大众理想的懦弱回归,是随波逐流,是对内心的恐惧 ——赫尔曼·黑塞《德米安》


Demo简单介绍

Wav2Lip-GAN

Wav2Lip-GAN 是一种基于生成对抗网络(GAN)的语音到唇形的转换模型。https://github.com/Rudrabha/Wav2Lip

基本原理是使用语音信号和人脸图像来训练一个生成器网络,该网络可以将输入的语音信号转换为对应的唇形。

该模型包括两个子网络:

  • 一个是语音识别网络,用于将语音信号转换为文本;
  • 另一个是唇形生成网络,用于将文本和人脸图像作为输入,生成对应的唇形。

两个网络通过GAN框架进行训练,以使生成的唇形尽可能地逼真。在测试阶段,给定一个语音信号和一个人脸图像,该模型可以生成一个与语音信号相对应的唇形序列,从而实现语音到唇形的转换。

GFPGAN

腾讯 GFPGAN 是一种基于生成对抗网络(GAN)的图像超分辨率模型。https://github.com/TencentARC/GFPGAN

基本原理是使用低分辨率的图像作为输入,通过生成器网络将其转换为高分辨率的图像。

该模型包括两个子网络:

  • 一个是生成器网络,用于将低分辨率图像转换为高分辨率图像;
  • 另一个是判别器网络,用于评估生成的图像是否逼真。

两个网络通过GAN框架进行训练,以使生成的图像尽可能地接近真实图像。在测试阶段,给定一个低分辨率的图像,该模型可以生成一个与之对应的高分辨率图像。腾讯GFPGAN采用了一些创新的技术,如渐进式训练、自适应实例归一化等,使得其在图像超分辨率任务中表现出色。

Demo 来自下面的项目完成,小伙伴可以直接参考。作者提供了一个ipynb Demo GitHub\Wav2Lip-GFPGAN\Wav2Lip-GFPGAN.ipynb,有基础小伙伴按照步骤即可完成,下面的就不需要看了

https://github.com/ajay-sainy/Wav2Lip-GFPGAN/

基于 Wav2Lip-GFPGAN 深度学习模型的数字人Demo_人工智能

有困难的小伙伴可以克隆下面的这个,fork 了上面的项目,提供了当前搭建环境步骤,需要的素材脚本:

https://github.com/LIRUILONGS/Wav2Lip-GFPGAN_Python_Demo

涉及到的模型和安装包下载

Wav2Lip

可以在项目中看到下载路径: https://github.com/Rudrabha/Wav2Lip

Wav2Liphttps://iiitaphyd-my.sharepoint.com/:u:/g/personal/radrabha_m_research_iiit_ac_in/Eb3LEzbfuKlJiR600lQWRxgBIY27JZg80f7V9jtMfbNDaQ?e=TBFBVW

Wav2Lip + GAN :https://iiitaphyd-my.sharepoint.com/:u:/g/personal/radrabha_m_research_iiit_ac_in/EdjI7bZlgApMqsVoEUUXpLsBxqXbn5z8VTmoxp55YNDcIA?e=n9ljGW

ffmpeg: https://www.gyan.dev/ffmpeg/builds/ffmpeg-git-essentials.7z ,Linux 环境直接用包管理工具安装即可

ffmpeg 装完之后 win系统 需要配置环境变量,这里不多讲。

GFPGAN

GFPGANv1.3.pth:https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth

parsing_parsenet.pth:https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth

detection_Resnet50_Final.pth:https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth

环境安装

wav2lip 环境

当前系统环境为 window11,Anaconda3 使用CPU 跑,虚拟环境创建

C:\Users\liruilong>conda create -n wav2lip python=3.8
C:\Users\liruilong>conda info --envs
# conda environments:
#
base                  *  C:\ProgramData\Anaconda3
myenv                    C:\Users\liruilong\AppData\Local\conda\conda\envs\myenv
wav2lip                  C:\Users\liruilong\AppData\Local\conda\conda\envs\wav2lip

切换虚拟环境的时候,报错了

C:\Users\liruilong>conda activate wav2lip
.....

后来在Anaconda Prompt (Anaconda3) 可以正常执行

(base) C:\Users\山河已无恙\Documents\GitHub\Wav2Lip-GFPGAN>conda activate wav2lip

(wav2lip) C:\Users\山河已无恙\Documents\GitHub\Wav2Lip-GFPGAN>conda list
.....

安装 requirements.txt 中的依赖库,直接安装报错了

(wav2lip) C:\Users\山河已无恙\Documents\GitHub\Wav2Lip-GFPGAN>pip install -r requirements.txt   -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
Looking in indexes: http://pypi.douban.com/simple/

需要添加 --use-pep517

(wav2lip) C:\Users\山河已无恙\Documents\GitHub\Wav2Lip-GFPGAN>pip install -r requirements.txt   -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com  --use-pep517
Looking in indexes: http://pypi.douban.com/simple/

检测 wav2lip 环境运行Demo 测试一下,当前项目预留了一些素材,这里使用模型wav2lip.pth

(wav2lip) C:\Users\山河已无恙\Documents\GitHub\Wav2Lip-GFPGAN>python .\Wav2Lip-master\inference.py --checkpoint_path .\Wav2Lip-master\checkpoints\wav2lip.pth --face .\inputs\kim_7s_raw.mp4 --audio .\inputs\kim_audio.mp3 --outfile result.mp4
Using cpu for inference.
Reading video frames...
Number of frames available for inference: 223
Extracting raw audio...
...................................
[libx264 @ 0000022caf538200] Weighted P-Frames: Y:1.2% UV:1.2%
[libx264 @ 0000022caf538200] ref P L0: 68.7%  8.6% 16.2%  6.4%
[libx264 @ 0000022caf538200] ref B L0: 75.0% 20.2%  4.8%
[libx264 @ 0000022caf538200] ref B L1: 94.9%  5.1%
[libx264 @ 0000022caf538200] kb/s:1433.66
[aac @ 0000022caf528940] Qavg: 237.868

运行完会在当前目录生成 result.mp4 文件

https://www.bilibili.com/video/BV1fX4y187jW/

然后用模型wav2lip_gan.pth 在试下

(wav2lip) C:\Users\山河已无恙\Documents\GitHub\Wav2Lip-GFPGAN>python .\Wav2Lip-master\inference.py --checkpoint_path  .\inputs\wav2lip_gan.pth --face .\inputs\kim_7s_raw.mp4 --audio .\inputs\kim_audio.mp3 --outfile result.mp4
Using cpu for inference.

https://www.bilibili.com/video/BV1Vo4y1T7F2/

这里 wav2lip 环境已经安装完成

GFPGAN 环境

准备一个新的音视频,使用 wav2lip_gan 生成,准备GFPGAN 环境

(wav2lip) C:\Users\山河已无恙\Documents\GitHub\Wav2Lip-GFPGAN>python .\Wav2Lip-master\inference.py --checkpoint_path  .\inputs\wav2lip_gan.pth --face .\inputs\demo.mp4 --audio .\inputs\demo_5_y.mp3 --outfile result.mp4
Using cpu for inference.
Reading video frames...
Number of frames available for inference: 2116
Extracting raw audio..
。。。。。。。。。。。。。。。。。。。。。
[libx264 @ 000001ba2a798d80] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 18% 18% 48%  3%  2%  2%  2%  3%  3%
[libx264 @ 000001ba2a798d80] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 23% 22% 17%  6%  6%  6%  6%  7%  8%
[libx264 @ 000001ba2a798d80] i8c dc,h,v,p: 49% 20% 22%  8%
[libx264 @ 000001ba2a798d80] Weighted P-Frames: Y:0.0% UV:0.0%
[libx264 @ 000001ba2a798d80] ref P L0: 80.9% 10.0%  6.6%  2.5%
[libx264 @ 000001ba2a798d80] ref B L0: 87.8% 10.5%  1.7%
[libx264 @ 000001ba2a798d80] ref B L1: 98.7%  1.3%
[libx264 @ 000001ba2a798d80] kb/s:703.37
[aac @ 000001ba2a79a780] Qavg: 170.234

(wav2lip) C:\Users\山河已无恙\Documents\GitHub\Wav2Lip-GFPGAN>

https://www.bilibili.com/video/BV1cX4y1h7k8/

创建一个结果文件夹

PS C:\Users\山河已无恙\Documents\GitHub\Wav2Lip-GFPGAN> mkdir results


    目录: C:\Users\山河已无恙\Documents\GitHub\Wav2Lip-GFPGAN


Mode                 LastWriteTime         Length Name
----                 -------------         ------ ----
d-----          2023/6/9      7:14                results


PS C:\Users\山河已无恙\Documents\GitHub\Wav2Lip-GFPGAN>

需要把上面生成的文件移到这个文件夹里面,然后执行下面的脚本

# day1.py

wav2lipFolderName = 'Wav2Lip-master'
gfpganFolderName = 'GFPGAN-master'
wav2lipPath =  '.\\' + wav2lipFolderName
gfpganPath = '.\\' + gfpganFolderName
outputPath = ".\\results"

import cv2
from tqdm import tqdm
from os import path

import os

# 上一步生成的视频
inputVideoPath = outputPath+'\\result.mp4'
# 中间数据
unProcessedFramesFolderPath = outputPath+'\\frames'

if not os.path.exists(unProcessedFramesFolderPath):
  os.makedirs(unProcessedFramesFolderPath)

vidcap = cv2.VideoCapture(inputVideoPath)
numberOfFrames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
print("FPS: ", fps, "Frames: ", numberOfFrames)

for frameNumber in tqdm(range(numberOfFrames)):
    _,image = vidcap.read()
    cv2.imwrite(path.join(unProcessedFramesFolderPath, str(frameNumber).zfill(4)+'.jpg'), image)

print("unProcessedFramesFolderPath:",unProcessedFramesFolderPath)
print("inputVideoPath:",inputVideoPath)

作用是将wav2lip处理的视频按帧数逐帧读取,将每一帧保存为 JPEG 格式的图片,并将这些图片保存到指定的文件夹 unProcessedFramesFolderPath

(wav2lip) C:\Users\liruilong\Documents\GitHub\Wav2Lip-GFPGAN>python day1.py
FPS:  25.0 Frames:  1793
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1793/1793 [00:10<00:00, 166.99it/s]
unProcessedFramesFolderPath:  
inputVideoPath: .\results\result.mp4

(wav2lip) C:\Users\liruilong\Documents\GitHub\Wav2Lip-GFPGAN>

之后会在 .\results\frames 看到切好的照片

现在准备 GFPGAN-master 的环境

(wav2lip) C:\Users\liruilong\Documents\GitHub\Wav2Lip-GFPGAN\GFPGAN-master>pip install -r requirements.txt -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com --use-pep517
Looking in indexes: http://pypi.douban.com/simple/
..........
Installing collected packages: numpy, scikit-image
  Attempting uninstall: numpy
    Found existing installation: numpy 1.23.5
    Uninstalling numpy-1.23.5:
      Successfully uninstalled numpy-1.23.5
  Attempting uninstall: scikit-image
    Found existing installation: scikit-image 0.20.0
    Uninstalling scikit-image-0.20.0:
      Successfully uninstalled scikit-image-0.20.0
Successfully installed numpy-1.20.3 scikit-image-0.19.3

(wav2lip) C:\Users\liruilong\Documents\GitHub\Wav2Lip-GFPGAN\GFPGAN-master>

GFPGANv1.3.pth 模型放到 /experiments/pretrained_models 目录下

(wav2lip) C:\Users\liruilong\Documents\GitHub\Wav2Lip-GFPGAN\GFPGAN-master>mkdir -p .\\experiments\pretrained_models

(wav2lip) C:\Users\liruilong\Documents\GitHub\Wav2Lip-GFPGAN\GFPGAN-master>cd  .\\experiments\pretrained_models

确认模型

目录: C:\Users\山河已无恙\Documents\GitHub\Wav2Lip-GFPGAN\GFPGAN-master\experiments\pretrained_models


Mode                 LastWriteTime         Length Name
----                 -------------         ------ ----
-a----          2023/6/7      1:43      348632874 GFPGANv1.3.pth

之后执行下面的命令

python inference_gfpgan.py -i $unProcessedFramesFolderPath -o $outputPath -v 1.3 -s 2 --only_center_face --bg_upsampler None

替换对应的变量,如果模型无法下载,需要把前面下载的放到指定位置

(wav2lip) C:\Users\liruilong\Documents\GitHub\Wav2Lip-GFPGAN\GFPGAN-master>python inference_gfpgan.py -i ..\results\frames -o ..\results -v 1.3 -s 2 --only_center_face --bg_upsampler None
C:\Users\liruilong\AppData\Local\conda\conda\envs\wav2lip\lib\site-packages\torchvision\transforms\functional_tensor.py:5: UserWarning: The torchvision.transforms.functional_tensor module is deprecated in 0.15 and will be **removed in 0.17**. Please don't rely on it. You probably just need to use APIs in torchvision.transforms.functional or in torchvision.transforms.v2.functional.
  warnings.warn(
C:\Users\liruilong\AppData\Local\conda\conda\envs\wav2lip\lib\site-packages\torchvision\models\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.
  warnings.warn(
C:\Users\liruilong\AppData\Local\conda\conda\envs\wav2lip\lib\site-packages\torchvision\models\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=None`.
  warnings.warn(msg)
Downloading: "https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth" to C:\Users\liruilong\AppData\Local\conda\conda\envs\wav2lip\lib\site-packages\facexlib\weights\detection_Resnet50_Final.pth

100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 104M/104M [00:06<00:00, 16.1MB/s]
Downloading: "https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth" to C:\Users\liruilong\AppData\Local\conda\conda\envs\wav2lip\lib\site-packages\facexlib\weights\parsing_parsenet.pth

100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 81.4M/81.4M [00:05<00:00, 14.8MB/s]
0it [00:00, ?it/s]
  warnings.warn(msg)
  0%|                                                                                                                                                                                  | 0/1793 [00:00<?, ?it/s]Processing 0000.jpg ...
  0%|                                                                                                                                                                        | 1/1793 [00:06<3:18:38,  6.65s/it]Processing 0001.jpg ...
  0%|▏                                                                                                                                                                       | 2/1793 [00:13<3:18:06,  6.64s/it]P
...............................
(wav2lip) C:\Users\liruilong\Documents\GitHub\Wav2Lip-GFPGAN\GFPGAN-master>

OK 跑完之后,需要用处理的图片合成视频,执行下面的脚本

import os


outputPath = ".\\results"

restoredFramesPath = outputPath + '\\restored_imgs\\'
processedVideoOutputPath = outputPath

dir_list = os.listdir(restoredFramesPath)
dir_list.sort()

import cv2
import numpy as np

batch = 0
batchSize = 300
from tqdm import tqdm
for i in tqdm(range(0, len(dir_list), batchSize)):
  img_array = []
  start, end = i, i+batchSize
  print("processing ", start, end)
  for filename in  tqdm(dir_list[start:end]):
      filename = restoredFramesPath+filename;
      img = cv2.imread(filename)
      if img is None:
        continue
      height, width, layers = img.shape
      size = (width,height)
      img_array.append(img)


  out = cv2.VideoWriter(processedVideoOutputPath+'\\batch_'+str(batch).zfill(4)+'.avi',cv2.VideoWriter_fourcc(*'DIVX'), 30, size)
  batch = batch + 1
 
  for i in range(len(img_array)):
    out.write(img_array[i])
  out.release()

concatTextFilePath = outputPath + "\\concat.txt"
concatTextFile=open(concatTextFilePath,"w")
for ips in range(batch):
  concatTextFile.write("file batch_" + str(ips).zfill(4) + ".avi\n")
concatTextFile.close()

concatedVideoOutputPath = outputPath + "\\concated_output.avi"
print("concatedVideoOutputPath:",concatedVideoOutputPath)

finalProcessedOuputVideo = processedVideoOutputPath+'\\final_with_audio.avi'
print("finalProcessedOuputVideo:",finalProcessedOuputVideo)
# ffmpeg -y -f concat -i {concatTextFilePath} -c copy {concatedVideoOutputPath} 

#ffmpeg -y -i {concatedVideoOutputPath} -i {inputAudioPath} -map 0 -map 1:a -c:v copy -shortest {finalProcessedOuputVideo}

#from google.colab import files
#files.download(finalProcessedOuputVideo)
(wav2lip) C:\Users\山河已无恙\Documents\GitHub\Wav2Lip-GFPGAN>python day2.py
  0%|                                                                                                                                                                                     | 0/6 [00:00<?, ?it/s]processing  0 300

  0%|                                                                                                                                                                                   | 0/300 [00:00<?, ?it/s]
  4%|██████▏                                                                                                                                                                  | 11/300 [00:00<00:02, 107.59it/s]
  7%|███████████▊                                                                                                                                                             | 21/300 [00:00<00:02, 104.49it/s]
 11%|██████████████████
 ...................
 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 293/293 [00:02<00:00, 107.10it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:25<00:00,  4.26s/it]
concatedVideoOutputPath: .\results\concated_output.avi
finalProcessedOuputVideo: .\results\final_with_audio.avi

(wav2lip) C:\Users\山河已无恙\Documents\GitHub\Wav2Lip-GFPGAN>

使用 ffmpeg 合并视频

PS C:\Users\山河已无恙\Documents\GitHub\Wav2Lip-GFPGAN> cd .\results\
PS C:\Users\山河已无恙\Documents\GitHub\Wav2Lip-GFPGAN\results> ffmpeg -y -f concat -i .\concat.txt  -c copy .\concated_output.avi
.....................
frame= 1793 fps=0.0 q=-1.0 Lsize=   24625kB time=00:00:59.76 bitrate=3375.3kbits/s speed=1.76e+03x
video:24577kB audio:0kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.197566%
PS C:\Users\山河已无恙\Documents\GitHub\Wav2Lip-GFPGAN\results> ls


    目录: C:\Users\山河已无恙\Documents\GitHub\Wav2Lip-GFPGAN\results


Mode                 LastWriteTime         Length Name
----                 -------------         ------ ----
d-----          2023/6/9      7:25                frames
d-----          2023/6/9     11:03                restored_imgs
-a----          2023/6/9     11:42        4231050 batch_0000.avi
-a----          2023/6/9     11:42        4274254 batch_0001.avi
-a----          2023/6/9     11:42        4281898 batch_0002.avi
-a----          2023/6/9     11:42        4165970 batch_0003.avi
-a----          2023/6/9     11:42        4222324 batch_0004.avi
-a----          2023/6/9     11:42        4069836 batch_0005.avi
-a----          2023/6/9     11:42            126 concat.txt
-a----          2023/6/9     11:52       25216450 concated_output.avi
-a----          2023/6/9      7:22        7515594 result.mp4

使用 ffmpeg 合并视频和音频

PS C:\Users\山河已无恙\Documents\GitHub\Wav2Lip-GFPGAN\results> ffmpeg -y -i .\concated_output.avi -i ..\inputs\demo_5_y.mp3  -map 0 -map 1:a -c:v copy -shortest  .\final_with_audio.avi
ffmpeg version git-2020-08-31-4a11a6f Copyright (c) 2000-2020 the FFmpeg developers
........
frame= 1793 fps=699 q=-1.0 Lsize=   25618kB time=00:00:59.76 bitrate=3511.2kbits/s speed=23.3x
video:24577kB audio:934kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.417315%
PS C:\Users\山河已无恙\Documents\GitHub\Wav2Lip-GFPGAN\results>

生成结果

https://www.bilibili.com/video/BV1914y1U7dH/


标签:GitHub,Users,Demo,Documents,wav2lip,GFPGAN,Wav2Lip
From: https://blog.51cto.com/liruilong/6509618

相关文章

  • React SSR - 写个 Demo 一学就会
    ReactSSR-写个Demo一学就会今天写个小Demo来从头实现一下react的SSR,帮助理解SSR是如何实现的,有什么细节。什么是SSRSSR即ServerSideRendering服务端渲染,是指将网页内容在服务器端中生成并发送到浏览器的技术。相比于客户端渲染(CSR),SSR一般用于以下场景:SEO......
  • Async Await 快速Demo
    usingSystem;usingSystem.Threading;usingSystem.Threading.Tasks;namespaceAsyncAwaitDemo{classProgram{staticvoidMain(string[]args){Console.WriteLine($"a1,主线程开始,线程Id:{Thread.CurrentThread.ManagedThrea......
  • 最全的iOS物理引擎demo
    概述最全的iOS物理引擎demo,实现重力、碰撞、推力、摆动、碰撞+重力、重力弹跳、仿摩拜单车贴纸效果、防iMessage滚动效果、防百度外卖首页重力感应等效果!详细一、准备工作1、需要Xcode8+iOS8的运行环境2、本例子实现重力、碰撞、推力、摆动、碰撞+重力、重力弹跳、仿......
  • VBA开发资料 Excel开发资料大全 VBA开源资料 VBA实战开发例子 VBA学习入门到提高 VBA
    记得十多年前还专门做个VBA开发的岗位,开发一些辅助制造业生产需要的业务,生产数据进出料,与供应商对接数据等等。现在网上招VBA的岗位少了,可能说明已经被一部分软件替代,也说明现在很多人已经能使用VBA了,可能就不专门设置这个岗位了。但在实际工作当中,使用VBA非常多的,并且快......
  • HTTP Proxy Demo 代码示例
    以下是一个简单的HTTPProxyDemo代码,使用Python3编写: ```pythonimportsocket defhandle_request(client_socket):#接收客户端请求request_data=client_socket.recv(1024)print(request_data.decode()) #解析请求,获取目标主机和端口号first_line=reque......
  • Annotation_demo
    参考:https://zhuanlan.zhihu.com/p/60730622CheckAge.javapackagecom.hmb;importjava.lang.annotation.ElementType;importjava.lang.annotation.Retention;importjava.lang.annotation.RetentionPolicy;importjava.lang.annotation.Target;@Target(ElementType......
  • React Native In Action中的demo的运行
     我用了最新的xcode和新的reactnative。Chapter6: Navigation这一章中的事例跑不起来,应该是程序用了就的版本的reactnavigation("react-navigation":"^2.0.1"),同时关于Navigation的用法也做了不小的改动,因此需要重新看相关文档改写。参考:https://reactnavigation.org/docs......
  • Condition类_demo
    参考:https://blog.csdn.net/u014082714/article/details/83927697https://blog.csdn.net/a1439775520/article/details/98471610Resource.javapackagecom.hmb;importjava.util.PriorityQueue;importjava.util.concurrent.locks.Condition;importjava.util.concurr......
  • 序列化和反序列化_demo
    参考:一文搞懂序列化与反序列化-知乎(zhihu.com)一、jdk序列化和反序列化module结构: FactInfo.javapackagecom.hmb;importjava.io.Serial;importjava.io.Serializable;publicclassFactInfoimplementsSerializable{@Serialprivatestaticfinall......
  • demosaicnet-master的包代码阅读笔记
    init.py我在学init用法时候的笔记该文件里面都是导入模块,其中从dataset.py是导入所有模块,因为模糊导入的__all__没有定义。from.modulesimportBayerDemosaickfrom.modulesimportXTransDemosaickfrom.mosaicimportxtransfrom.mosaicimportbayerfrom.mosaicim......