torch.topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor)
pytorch中文官网文档:http://www.mamicode.com/info-detail-2217311.html
沿给定dim
维度返回输入张量input
中 k
个最大值。
如果不指定dim
,则默认为input
的最后一维。
如果为largest
为 False
,则返回最小的 k
个值。
返回一个元组 (values,indices),其中indices
是原始输入张量input
中测元素下标。
如果设定布尔值sorted
为_True_,将会确保返回的 k
个值被排序。
参数:
- input (Tensor) – 输入张量
- k (int) – “top-k”中的
k
- dim (int, optional) – 排序的维
- largest (bool, optional) – 布尔值,控制返回最大或最小值
- sorted (bool, optional) – 布尔值,控制返回值是否排序
- out (tuple, optional) – 可选输出张量 (Tensor, LongTensor) output buffer
--------------------------实例--------------------
假设神经网络的输出如下,为二分类。batch_size=4
import torch
output = torch.tensor([[-5.4783, 0.2298],
[-4.2573, -0.4794],
[-0.1070, -5.1511],
[-0.1785, -4.3339]])
得到其top1值操作如下:
maxk = max((1,)) # 取top1准确率,若取top1和top5准确率改为max((1,5))
_, pred = output.topk(maxk, 1, True, True)
topk参数中,maxk取得是top1准确率,dim=1是按行取值, largest=1是取最大值
结果如下,
_
tensor([[ 0.2298],
[-0.4794],
[-0.1070],
[-0.1785]])
pred
tensor([[1],
[1],
[0],
[0]])
_是top1的值,pred是最大值的索引(size=4*1),一般会进行转置处理同真实值对比
标签:dim,--,optional,top1,pytorch,topk,largest,input,True From: https://blog.51cto.com/u_16159492/6479861