记录通过pytorch编写cnn 模型示例,包括训练、模型、预测全流程代码结构,数据采集公共调制方式识别数据集,编写代码简单,以便进行pytorch学习。
train.py
import os import numpy as np import torch import torch.nn as nn import torch.optim as optim from tqdm import tqdm from sklearn.model_selection import train_test_split from multi_scale_module import GoogLeNet from center_loss import center_loss # Torch的核心是流行的神经网络和简单易用的优化库 # 使用Torch能在实现复杂的神经网络拓扑结构的时候保持最大的灵活性 # 同时可以使用并行的方式对CPU和GPU进行更有效率的操作。 # tqdm 显示进度条 def main(): # 检测GPU是否可用 device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu") print("using {} device.".format(device)) # data_root = r'/home/wangchao/location/core/model/multi_scale_2/' data_root = r'/home/wc/' # 载入训练集 train_dataset = np.load(os.path.join(data_root, 'train.npy')) labels = np.load(os.path.join(data_root, 'train_label.npy')) # 训练集划分 x_train, x_test, y_train, y_test = train_test_split(train_dataset, labels, test_size=0.1, random_state=0) # 数据格式转换 train 训练集 val 测试集 train_labels = [] for i in y_train: train_labels.append(int(i[0])) train_set = [] for i in x_train: train_set.append(i) val_labels = [] for j in y_test: val_labels.append(j[0]) val_set = [] for j in x_test: val_set.append(j) # 设置每个batch大小 batch_size = 128 nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers print('Using {} dataloader workers every process'.format(nw)) # 创建x、y的张量 训练集、测试集 x = torch.tensor(np.array(train_set)) x = torch.tensor(x).type(torch.float) y = torch.tensor(np.array(train_labels)) y = torch.tensor(y).type(torch.long) train_dataset = torch.utils.data.TensorDataset(x, y) x_val1 = torch.tensor(np.array(val_set)) x_val1 = torch.tensor(x_val1).type(torch.float) y_val1 = torch.tensor(np.array(val_labels)) y_val1 = torch.tensor(y_val1).type(torch.long) val_dataset = torch.utils.data.TensorDataset(x_val1, y_val1) # torch 数据载入 train_num = len(train_dataset) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=nw, drop_last=True) val_num = len(val_dataset) validate_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=nw, drop_last=True) print("using {} images for training, {} images for validation.".format(train_num, val_num)) # 神经网络框架搭建 # net net = GoogLeNet(num_classes=11, aux_logits=True, init_weights=True) net.to(device) # 损失函数 loss_function = nn.CrossEntropyLoss() # 优化器 optimizer = optim.SGD(net.parameters(), lr=0.003, momentum=0.9) epochs = 500 # 迭代次数 best_acc = 0.0 # 精度 # 网络结构保存路径 save_path = './multiScaleNet.pth' train_steps = len(train_loader) for epoch in range(epochs): net.train() running_loss = 0.0 train_bar = tqdm(train_loader) for step, data in enumerate(train_bar): images, labels = data images = images.reshape(128, 1024, 2, 1) optimizer.zero_grad() logits, aux_logits = net(images.to(device)) aux_logits = torch.squeeze(aux_logits) # 计算损失函数 loss0 = loss_function(logits, labels.to(device)) loss_center = center_loss(aux_logits, labels.to(device), 0.5) loss = loss0 + loss_center * 0.5 loss.backward() optimizer.step() running_loss += loss.item() train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1, epochs, loss) # validate net.eval() acc = 0.0 with torch.no_grad(): val_bar = tqdm(validate_loader) for val_data in val_bar: val_images, val_labels = val_data val_images = val_images.reshape(128, 1024, 2, 1) outputs = net(val_images.to(device)) predict_y = torch.max(outputs, dim=1)[1] acc += torch.eq(predict_y, val_labels.to(device)).sum().item() val_accurate = acc / val_num print('[epoch %d] train_loss: %.3f val_accuracy: %.3f' % (epoch + 1, running_loss / train_steps, val_accurate)) if val_accurate > best_acc: best_acc = val_accurate torch.save(net.state_dict(), save_path) print('Finished Training') if __name__ == '__main__': main()
predict.py
import os import json import numpy as np import torch from tqdm import tqdm from multi_scale_module import GoogLeNet def main(validate_loader): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path) json_file = open(json_path, "r") class_indict = json.load(json_file) # create model model = GoogLeNet(num_classes=11, aux_logits=False).to(device) # load model weights weights_path = r"E:\python\modulation_identification\core\model\multi_scale_2\multiScaleNet.pth" assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path) model.eval() acc = 0.0 with torch.no_grad(): # predict class val_bar = tqdm(validate_loader) for val_data in val_bar: val_images, val_labels = val_data val_images = val_images.reshape(32, 1024, 2, 1) outputs = torch.squeeze(model(val_images.to(device))).cpu() predicts = torch.max(outputs, dim=1)[1] acc += torch.eq(predicts, val_labels.to(device)).sum().item() val_accurate = acc / val_num print('val_accuracy: %.3f' % (val_accurate)) if __name__ == '__main__': data_root = r'E:\python\modulation_identification\data' test_dataset = np.load(os.path.join(data_root, 'test1.npy')) labels = np.load(os.path.join(data_root, 'test1_label.npy')) test_labels = [] for i in labels: test_labels.append(int(i[0])) test_labels = torch.tensor(np.array(test_labels)) test_set = [] for i in test_dataset: test_set.append(i) test_set = torch.tensor(test_set).type(torch.float) dataset = torch.utils.data.TensorDataset(test_set, test_labels) batch_size = 32 nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) val_num = len(dataset) validate_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=nw, drop_last=True) main(validate_loader)
model.py
import torch.nn as nn import torch import torch.nn.functional as F class GoogLeNet(nn.Module): def __init__(self, num_classes=1000, aux_logits=True, init_weights=False): super(GoogLeNet, self).__init__() self.aux_logits = aux_logits self.conv4 = BasicConv2d(1024, 512, kernel_size=(3, 1), stride=2, padding=(1, 0)) self.inception3a = Inception(512, 256, 256, 128, 128, 64, 64, 32) self.conv5 = BasicConv2d(480, 256, kernel_size=(3, 1), stride=2, padding=(1, 0)) self.inception3b = Inception(256, 64, 128, 32, 64, 32, 32, 16) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc1 = nn.Linear(144, 72) self.fc2 = nn.Linear(72, num_classes) if init_weights: self._initialize_weights() def forward(self, x): x = self.conv4(x) x = self.inception3a(x) x = self.conv5(x) x = self.inception3b(x) x = self.avgpool(x) # 按列进行拼接 x = torch.flatten(x, 1) x = F.dropout(x, 0.5, training=self.training) x1 = self.fc1(x) # x = F.dropout(x1, 0.5, training=self.training) x = self.fc2(x1) if self.training: return x, x1 return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) class Inception(nn.Module): def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, ch7x7red, ch7x7): super(Inception, self).__init__() self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1) self.branch2 = nn.Sequential( BasicConv2d(in_channels, ch3x3red, kernel_size=1), BasicConv2d(ch3x3red, ch3x3, kernel_size=(3, 1), padding=(1, 0)) # 保证输出大小等于输入大小(输出特征矩阵的高和宽等于输入特征矩阵的高和宽) ) self.branch3 = nn.Sequential( BasicConv2d(in_channels, ch5x5red, kernel_size=1), BasicConv2d(ch5x5red, ch5x5, kernel_size=(5, 1), padding=(2, 0)) # 保证输出大小等于输入大小 ) self.branch4 = nn.Sequential( BasicConv2d(in_channels, ch7x7red, kernel_size=1), BasicConv2d(ch7x7red, ch7x7, kernel_size=(7, 1), padding=(3, 0)) ) def _forward(self, x): branch1 = self.branch1(x) branch2 = self.branch2(x) branch3 = self.branch3(x) branch4 = self.branch4(x) outputs = [branch1, branch2, branch3, branch4] return outputs def forward(self, x): outputs = self._forward(x) return torch.cat(outputs, 1) # 辅助分类器 class InceptionAux(nn.Module): def __init__(self, in_channels, num_classes): super(InceptionAux, self).__init__() self.averagePool = nn.AvgPool2d(kernel_size=1, stride=1) self.conv = BasicConv2d(in_channels, 34, kernel_size=1) self.fc = nn.Linear(70176, num_classes) def forward(self, x): x = self.averagePool(x) # N x 128 x 4 x 4 x = torch.flatten(x, 1) x = F.dropout(x, 0.5, training=self.training) # N x 2048 x = F.relu(self.fc(x), inplace=True) return x # 基础卷积层 class BasicConv2d(nn.Module): def __init__(self, in_channels, out_channels, **kwargs): super(BasicConv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, **kwargs) self.relu = nn.ReLU(inplace=True) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): x = self.conv(x) x = self.relu(x) x = self.bn(x) return x
标签:nn,val,示例,self,torch,pytorch,train,使用,size From: https://www.cnblogs.com/pass-ion/p/17480752.html