一、应用背景
Krylov子空间方法是模型降阶(MOR)的一种,Krylov 子空间方法就是在Krylov子空间中寻找近似解。
二、Krylov子空间
n是原始矩阵的维度,m为降阶后矩阵的维度,通常m<<n。
三、Arnoldi 过程: 计算Km 的一组正交
对应上述MGS过程的python代码:
import numpy as np def arnoldi_iteration(A, b, n: int): """Compute a basis of the (n + 1)-Krylov subspace of the matrix A. This is the space spanned by the vectors {b, Ab, ..., A^n b}. Parameters ---------- A : array_like An m × m array. b : array_like Initial vector (length m). n : int One less than the dimension of the Krylov subspace, or equivalently the *degree* of the Krylov space. Must be >= 1. Returns ------- Q : numpy.array An m x (n + 1) array, where the columns are an orthonormal basis of the Krylov subspace. h : numpy.array An (n + 1) x n array. A on basis Q. It is upper Hessenberg. """ eps = 1e-12 h = np.zeros((n + 1, n)) Q = np.zeros((A.shape[0], n + 1)) # Normalize the input vector Q[:, 0] = b / np.linalg.norm(b, 2) # Use it as the first Krylov vector for k in range(1, n + 1): v = np.dot(A, Q[:, k - 1]) # Generate a new candidate vector for j in range(k): # Subtract the projections on previous vectors h[j, k - 1] = np.dot(Q[:, j].conj(), v) v = v - h[j, k - 1] * Q[:, j] h[k, k - 1] = np.linalg.norm(v, 2) if h[k, k - 1] > eps: # Add the produced vector to the list, unless Q[:, k] = v / h[k, k - 1] else: # If that happens, stop iterating. return Q, h return Q, h
四、重要性质
(4.5)和(4.6)这两个式子在指数积分方法(krylov法)中会有应用。
标签:vector,basis,Krylov,np,Arnoldi,空间,array From: https://www.cnblogs.com/spacerunnerZ/p/17473394.html