首页 > 其他分享 >Prompt 手册——gpt-best-practices

Prompt 手册——gpt-best-practices

时间:2023-06-09 22:35:03浏览次数:43  
标签:输出 Prompt 模型 查询 GPT 任务 practices gpt 可以

本文链接:https://www.cnblogs.com/wanger-sjtu/p/17470388.html

本文是 OpenAI gpt-best-practices 对如何使用GPT的Prompt指导。

文中一共提出了六类提示词优化策略:

• 在查询中包含详细信息以获得更相关的答案
• 为模型赋予特定的角色
• 使用定界符清楚地指示输入的不同部分
• 指定完成任务所需的步骤
• 提供例子
• 指定所需的输出长度

写清楚说明

GPT 无法读懂你想法。如果输出太长,要求简短的答复。如果输出太简单,请要求专家级的写作。如果你不喜欢这种格式,请展示你希望看到的格式。GPT 对你想要什么的猜测越少,获得好的结果的可能性就越大。

在你的查询中包含详细信息以获得更相关的答案
给模型设定对应的角色
三重反引号、XML 标记、章节标题等分隔符可以帮助区分要区别对待的文本部分
有些任务最好指定为一系列步骤。明确地写出步骤可以使模型更容易理解
提供适用于所有示例的一般说明通常比通过示例演示任务的所有排列更有效,但在某些情况下提供示例可能更容易
要求模型生成具有给定目标长度的输出。目标输出长度可以根据单词、句子、段落、要点等的计数来指定

提供参考文本

GPT 可以自信地编造假答案,尤其是当被问及深奥的话题或引用和 URL 时。就像一张笔记可以帮助学生在考试中取得更好的成绩一样,为 GPT 提供参考文本可以帮助以更少的捏造来回答。

  • 如果我们可以为模型提供与当前查询相关的可信信息,那么我们可以指示模型使用提供的信息来编写其答案。ref
  • 如果输入已补充相关知识,则可以直接要求模型通过引用所提供文档中的段落来为其答案添加引文。ref

将复杂任务拆分为更简单的子任务

正如在软件工程中将复杂系统分解为一组模块化组件是一种很好的做法一样,提交给 GPT 的任务也是如此。复杂的任务往往比简单的任务有更高的错误率。此外,复杂的任务通常可以重新定义为更简单任务的工作流,其中早期任务的输出用于构建后续任务的输入。

  • 对于需要大量独立指令集来处理不同情况的任务,首先对查询类型进行分类并使用该分类来确定需要哪些指令可能是有益的。

  • 对于需要很长对话的对话应用,总结或过滤之前的对话。另一种解决方案是动态选择与当前查询最相关的对话的先前部分。

  • 要总结一个很长的文档,比如一本书,我们可以使用一系列查询来总结文档的每个部分。节摘要可以被连接和总结生成摘要的摘要。这个过程可以递归地进行,直到总结了整个文档。

给 GPT 时间“思考”

如果要求将 17 乘以 28,你可能不会立即知道,但随着时间的推移仍然可以计算出来。同样,GPT 在试图立即回答而不是花时间找出答案时会犯更多的推理错误。在回答之前询问一系列推理可以帮助 GPT 更可靠地推理出正确答案。有时,当我们明确指示模型在得出结论之前根据第一原则进行推理时,我们会得到更好的结果。

  • 内心独白的想法是指示模型将本应对用户隐藏的输出部分放入结构化格式中,以便于解析它们。然后在将输出呈现给用户之前,对输出进行解析并仅使部分输出可见。

  • 通常可以通过使用后续查询提示模型来查找它在先前传递中遗漏的任何摘录来获得更好的性能。

使用外部工具

通过为 GPT 提供其他工具的输出来弥补它们的弱点。如果一项任务可以通过工具而不是 GPT 更可靠或更有效地完成,请卸载它以充分利用两者。

  • 如果作为输入的一部分提供,模型可以利用外部信息源。这可以帮助模型生成更明智和最新的响应。嵌入可用于实现高效的知识检索,以便在运行时将相关信息动态添加到模型输入中。

  • 不能依赖 GPT 自行准确地执行算术或长计算。在需要的情况下,可以指示模型编写和运行代码,而不是进行自己的计算。

系统地测试更改

如果可以衡量,提高绩效会更容易。在某些情况下,对提示的修改会在一些孤立的示例上获得更好的性能,但会导致在更具代表性的示例集上的整体性能变差。因此,为确保更改对性能产生积极影响,可能有必要定义一个综合测试套件(也称为“评估”)。

参考黄金标准答案评估模型输出:假设已知问题的正确答案应该参考一组特定的已知事实。然后我们可以使用模型查询来计算答案中包含了多少所需事实。

标签:输出,Prompt,模型,查询,GPT,任务,practices,gpt,可以
From: https://www.cnblogs.com/wanger-sjtu/p/17470388.html

相关文章

  • 文心一言 VS 讯飞星火 VS chatgpt (36)-- 算法导论5.3 6题
    六、请解释如何实现算法PERMUTE-BY-SORTING,以处理两个或更多优先级相同的情形。也就是说,即使有两个或更多优先级相同,你的算法也应该产生一个均匀随机排列。文心一言:算法PERMUTE-BY-SORTING是一种基于排序的随机排列算法,它通过将输入数组中的元素按照优先级排序,然后根据优先级依......
  • 零代码编程:用ChatGPT提取新闻网站上的文本
    现在国内的新闻网站上,乱七八糟的广告和其他不相干内容太多。怎么能批量提取出新闻标题和正文呢?GeneralNewsExtractor(GNE)是一个通用新闻网站正文抽取模块,输入一篇新闻网页的HTML,输出正文内容、标题、作者、发布时间、正文中的图片地址和正文所在的标签源代码。GNE在提取今日头条、......
  • 文心一言 VS 讯飞星火 VS chatgpt (36)-- 算法导论5.3 6题
    六、请解释如何实现算法PERMUTE-BY-SORTING,以处理两个或更多优先级相同的情形。也就是说,即使有两个或更多优先级相同,你的算法也应该产生一个均匀随机排列。文心一言:算法PERMUTE-BY-SORTING是一种基于排序的随机排列算法,它通过将输入数组中的元素按照优先级排序,然后根据优先级......
  • 2023高考第一天,用ChatGPT挑战全国卷作文,已达到双一流高校学生水平?
    前言2023年高考语文结束啦,今天我们用ChatGPT来挑战高考作文,一起来看看它的表现如何?ChatGPT突然爆火网络,它真的会取代人类的工作吗?什么是ChatGPT?ChatGPT是由OpenAI开发的,OpenAI是一家由伊隆·马斯克和其他著名科技企业家共同创立的人工智能研究公司。OpenAI旨在推动人工智能技术......
  • 带你体验AI系列之云原生最佳实践--免费体验GPT-4教程
    前言​【GPT-4】是OpenAI最新推出的大型语言模型,它支持图像和文本输入,以文本形式输出。它比GPT-3.5更大、更强、更猛。最重要的是据与研究表明,他在某些场景下,可以通过图灵测试。但是,却缺点是收费,不像GPT-3.5那样容易白嫖。不过今天我就带你嫖一手,真香警告!本教程可称为云原生......
  • java集成chatGpt完整案例代码(效果和官网一样逐字输出)
    背景要集成chatGpt参考我上一篇文章即可。但是,如果要实现官网一样的效果,逐字输出,难度就提升了不少了。经过在官网的研究发现它应该是采用了SSE技术,这是一种最新的HTTP交互技术。SSE(Server-SentEvents):通俗解释起来就是一种基于HTTP的,以流的形式由服务端持续向客户端发送数据的......
  • Prompt提示-ChatGPT的潘多拉魔盒
    1.书籍内容分享总结把ChatGPT变成个性化的生活教练。你可以通过输入最喜欢的书籍的标题和作者来修改其响应。选择符合你目标的资源。在下面的例子中,我们使用了路遥的《平凡的世界》作为举例。Prompt:我希望你能担任我的人生导师。请总结一下路遥的小说书籍《平凡的世界》,这是一部描......
  • chatgpt接入企业微信应用
    github: https://github.com/whyiyhw/chatgpt-wechat安装文档:https://github.com/whyiyhw/chatgpt-wechat/blob/main/doc/install.md效果图:   备注:企业微信报错60020解决方法 将项目启动IP配置进去,再进行配置应用的企业可信IP     备用教程记录 ......
  • [人工智能-NLP]使用GPT-2预训练模型进行微调
    下面是一个使用GPT-2进行微调的示例。以文本生成为例,我们将微调GPT-2来生成新闻标题。此外,我们将使用PyTorch作为深度学习框架,以便于构建和训练模型。安装PyTorch和Transformers首先需要安装PyTorch和Transformers库。在终端中输入以下命令:pipinstalltorchtransformers......
  • 【人人懂AI】用chatGPT学会大模型GPT
    1.一句话掌握最新关键知识点1.1什么是chatGPT?chatGPT是基于OpenAI公司的人工智能大模型GPT系列开发出的一个网页版的对话机器人。用户可以在网页登录与chatGPT进行语言交流,支持多种主流语言,chatGPT与传统大的智能对话机器人不同,它可以几乎接近人类的理解和表达能力,在对话中扮......