首页 > 其他分享 >autogpt - agent

autogpt - agent

时间:2023-06-02 19:23:49浏览次数:54  
标签:autogpt name cfg self agent json command thoughts

目录

导包

from datetime import datetime

from colorama import Fore, Style

from autogpt.app import execute_command, get_command
from autogpt.config import Config
from autogpt.json_utils.json_fix_llm import fix_json_using_multiple_techniques
from autogpt.json_utils.utilities import LLM_DEFAULT_RESPONSE_FORMAT, validate_json
from autogpt.llm import chat_with_ai, create_chat_completion, create_chat_message
from autogpt.llm.token_counter import count_string_tokens
from autogpt.log_cycle.log_cycle import (
    FULL_MESSAGE_HISTORY_FILE_NAME,
    NEXT_ACTION_FILE_NAME,
    USER_INPUT_FILE_NAME,
    LogCycleHandler,
)
from autogpt.logs import logger, print_assistant_thoughts
from autogpt.speech import say_text
from autogpt.spinner import Spinner
from autogpt.utils import clean_input
from autogpt.workspace import Workspace

__init__初始化方法

class Agent:
    """Agent class for interacting with Auto-GPT.
    用于和Auto-GPT交互的Agent类

    Attributes:
        ai_name: The name of the agent.
        ai_name是用于指定agent的名称

        memory: The memory object to use.
        memory代表的是使用的内存对象。

        full_message_history: The full message history.
        完整的消息历史记录

        next_action_count: The number of actions to execute.
        执行操作的次数

        system_prompt: The system prompt is the initial prompt that defines everything
          the AI needs to know to achieve its task successfully.
        Currently, the dynamic and customizable information in the system prompt are
          ai_name, description and goals.
        system_prompt是人工智能成功完成任务所需要的一切的初始提示,
        目前,系统提示当中的动态和可以定制的信息有ai_name、description、goals。

        triggering_prompt: The last sentence the AI will see before answering.
        triggering_prompt:AI回答前看到的最后一句话

            For Auto-GPT, this prompt is:
            对于Auto-GPT来说,这个所谓的triggering prompt是:

            Determine which next command to use, and respond using the format specified
              above:
            确定一下要使用哪一个下一个命令,并且使用上述指定的格式进行响应。

            The triggering prompt is not part of the system prompt because between the
              system prompt and the triggering
            prompt we have contextual information that can distract the AI and make it
              forget that its goal is to find the next task to achieve.
            触发提示不是系统提示的一部分。因为在系统提示和触发提示之间,
            我们有可能是有上下文信息,这些上下文信息是可能会干扰AI,
            然后让AI忘掉,它的目标是去找到下一个要完成的任务。

            SYSTEM PROMPT
            系统提示
            CONTEXTUAL INFORMATION (memory, previous conversations, anything relevant)
            上下文信息(记忆,以前的对话,任何相关信息)
            TRIGGERING PROMPT
            触发提示

        The triggering prompt reminds the AI about its short term meta task
        (defining the next task)
        触发提示提醒了AI,它的短期的元任务是什么鬼。
        定义下一个任务。
    """

    # 定义了一个名字叫做__init__的初始化函数
    # 这个函数有9个参数
    # 1、ai_name:这个是agent的名称
    # 2、memory: 这个是记忆对象
    # 3、full_message_history: 完整的消息历史
    # 4、next_action_count: 执行操作的次数
    # 5、command_registry: 命令注册?
    # 6、config: 配置
    # 7、system_prompt: 系统提示
    # 8、triggering_prompt: 触发提示
    # 9、workspace_directory: 工作空间目录

    def __init__(
        self,
        ai_name,
        memory,
        full_message_history,
        next_action_count,
        command_registry,
        config,
        system_prompt,
        triggering_prompt,
        workspace_directory,
    ):
        # 通过autogpt.config导入Config,创建了一个名字叫做cfg的配置对象
        cfg = Config()
        self.ai_name = ai_name
        self.memory = memory
        # summary_memory这个属性,暂时不明白是什么意思
        # 初始化memory避免幻觉?
        self.summary_memory = (
            "I was created."  # Initial memory necessary to avoid hallucination
        )
        self.last_memory_index = 0
        self.full_message_history = full_message_history
        self.next_action_count = next_action_count
        self.command_registry = command_registry
        self.config = config
        self.system_prompt = system_prompt
        self.triggering_prompt = triggering_prompt
        # autogpt.workspace
        # cfg.restrict_to_workspace是一个布尔值
        # 这是通过读取RESTRICT_TO_WORKSPACE环境变量,表示是否限制在工作空间当中
        self.workspace = Workspace(workspace_directory, cfg.restrict_to_workspace)
        # 将当前时间格式化为字符串,赋值给created_at属性
        self.created_at = datetime.now().strftime("%Y%m%d_%H%M%S")
        # 这个属性cycle_count
        self.cycle_count = 0
        # 这个属性log_cycle_handler
        self.log_cycle_handler = LogCycleHandler()

start_interaction_loop方法

    def start_interaction_loop(self):
        # Interaction Loop
        # 交互循环
        cfg = Config()
        self.cycle_count = 0
        command_name = None
        arguments = None
        user_input = ""

start_interaction_loop,看英文意思应该是开始交互的循环。

  1. 这里面是创建了一个cfg配置对象。
  2. cycle_count应该是对话次数的计数。
  3. command_name字面意思是命令名称。
  4. auguments是参数的意思。
  5. user_input是用户输入的意思。

1、初始化一些参数

        while True:
            # Discontinue if continuous limit is reached
            # 如果达到了连续对话的极限,那么就停止了
            # cycle_count表示对话次数
            self.cycle_count += 1
            # 将当前cycle对话当中的日志计数器设置为0。
            self.log_cycle_handler.log_count_within_cycle = 0
            # 将当前cycle对话的历史记录,写入到日志文件当中
            self.log_cycle_handler.log_cycle(
                self.config.ai_name,
                self.created_at,
                self.cycle_count,
                self.full_message_history,
                FULL_MESSAGE_HISTORY_FILE_NAME,
            )

2、判断跳出循环的时机

            # 对于连续对话模式cfg.continuous_mode
            # 如果对话次数cycle_count达到了设定的极限cfg.continuous_limit
            # 就输出一条日志信息(logger.typewriter_log)
            # 并且跳出循环
            if (
                cfg.continuous_mode
                and cfg.continuous_limit > 0
                and self.cycle_count > cfg.continuous_limit
            ):
                logger.typewriter_log(
                    "Continuous Limit Reached: ", Fore.YELLOW, f"{cfg.continuous_limit}"
                )
                break

3、核心LLM调用函数

# Send message to AI, get response
            # 向AI发送消息,并且获得响应
            # AI思考的时候,显示一个旋转的加载按钮
            with Spinner("Thinking... "):
                assistant_reply = chat_with_ai(
                    self,
                    self.system_prompt, # 系统提示
                    self.triggering_prompt, # 触发提示
                    self.full_message_history, # 完整消息的历史记录
                    self.memory, # 记忆
                    cfg.fast_token_limit, # 快速令牌限制
                )  # TODO: This hardcodes the model to use GPT3.5. Make this an argument

当前代码将硬编码使用chatgpt 3.5来进行聊天,建议将其作为一个参数传递给chat_with_ai函数,以便于在需要的时候更改模型

chat_with_ai这个函数是最最核心的函数。

4、将LLM response格式化为JSON

# 将机器人的回复格式化为json格式
            assistant_reply_json = fix_json_using_multiple_techniques(assistant_reply)

将机器人回复的格式转换成为json格式。

这个是格式化输出。

这个也挺核心的。

5、遍历plugin进行LLM response的后处理

            for plugin in cfg.plugins:
                if not plugin.can_handle_post_planning():
                    continue
                assistant_reply_json = plugin.post_planning(assistant_reply_json)

这段代码是一个 Python 的 for 循环语句,

它遍历了一个名为 cfg.plugins 的列表中的每一个元素,

并对每个元素执行一些操作。

具体来说,我们可以将这段代码拆解为以下几个部分:

  • 1、for plugin in cfg.plugins:
    1. 这是一个 for 循环语句,
    2. 它会遍历 cfg.plugins 列表中的每一个元素,
    3. 并将当前元素赋值给变量 plugin
  • 2、if not plugin.can_handle_post_planning():
    1. 这是一个条件语句,
    2. 它会判断当前遍历到的 plugin 是否具有 can_handle_post_planning 方法。
    3. 如果该方法返回 False,
    4. 那么跳过当前循环,
    5. 执行下一个循环。

这个can_handle_post_planning到底是个什么方法?在什么位置呢?

image-20230602152932025

image-20230602153141752

这个方法的意思,就是判断一下,插件是否可以处理post_planning。

那么这个post_planning的理解就很重要了。

post_planning的字面意思是规划后

大致应该是后处理的意思。

  • 3、assistant_reply_json = plugin.post_planning(assistant_reply_json)
    • 这是一个函数调用语句,
    • 它会调用当前遍历到的 pluginpost_planning 方法,
    • 并将变量 assistant_reply_json 作为参数传递给该方法。
    • 该方法的返回值会被赋值给变量 assistant_reply_json

这里就需要注意了,为什么plugin会有post_planning方法呢?

通过查看这个post_planning是一个抽象方法。

这个方法是在包中:auto_gpt_plugin_template中。

这个包就是插件模板

image-20230602153436048

image-20230602153647219

可以看到这个方法什么时候被调用呢?

the planning chat completion:计划中的聊天端点完成。

机器人的response,转变成为了,resulting response。

  • 综合来看,
  • 这段代码的作用是:
    • 遍历 cfg.plugins 列表中的每一个元素,
    • 对于具有 can_handle_post_planning 方法的元素,
    • 调用其 post_planning 方法,
    • 并将变量 assistant_reply_json 作为参数传递给该方法。
    • 该方法的返回值会更新变量 assistant_reply_json

6、打印assistant的thoughts

            # Print Assistant thoughts
            if assistant_reply_json != {}:
                validate_json(assistant_reply_json, LLM_DEFAULT_RESPONSE_FORMAT)
                # Get command name and arguments
                try:
                    print_assistant_thoughts(
                        self.ai_name, assistant_reply_json, cfg.speak_mode
                    )
                    command_name, arguments = get_command(assistant_reply_json)
                    if cfg.speak_mode:
                        say_text(f"I want to execute {command_name}")

                    arguments = self._resolve_pathlike_command_args(arguments)

                except Exception as e:
                    logger.error("Error: \n", str(e))

这段代码是一个 Python 中的条件语句,

它用于打印 Assistant 的回复内容、并获取其中的命令名称和参数


具体来说,我们可以将这段代码拆解为以下几个部分:

  • 1、# Print Assistant thoughts

    • 这是一个注释,用于描述下面的代码块的作用。
  • 2、if assistant_reply_json != {}:

    • 这是一个条件语句,
    • 它会判断变量 assistant_reply_json 是否为空字典
    • 如果不是空字典
    • 那么执行下面的代码块。
  • 3、validate_json(assistant_reply_json, LLM_DEFAULT_RESPONSE_FORMAT)

    • 这是一个函数调用语句,
    • 它会调用名为 validate_json 的函数,
    • 对变量 assistant_reply_json 进行格式验证。

要对插件处理过的json进行格式校验。

这个validate_json函数,点进去之后,有个报错。

解决报错

image-20230602155019774

通过上面的注释,可以知道这么一个问题:

在 Python 3.8 及之前的版本中,确实不支持使用 X | Y 的方式来表示类型的联合(Union)。

在 Python 3.10 中,引入了一项新特性,即使用 X | Y 的方式来表示类型的联合。在 Python 3.10 及之后的版本中,可以使用这种方式来表示类型的联合。

在 Python 3.8 及之前的版本中,如果需要表示类型的联合,可以使用 typing.Union 类型注释。例如,可以使用 Union[int, float] 来表示一个整数或浮点数类型的联合。

那我就没有必要再用这个python 3.8了。

我直接下载最新的吧。

image-20230602155254694

image-20230602160406852

  • pip的默认安装位置,我就不修改了。
  • 改一下阿里源。
  • 然后就是pycharm当中配置工程的环境。

6、打印assistant的thoughts

            # Print Assistant thoughts
            if assistant_reply_json != {}:
                validate_json(assistant_reply_json, LLM_DEFAULT_RESPONSE_FORMAT)
                # Get command name and arguments
                try:
                    print_assistant_thoughts(
                        self.ai_name, assistant_reply_json, cfg.speak_mode
                    )
                    command_name, arguments = get_command(assistant_reply_json)
                    if cfg.speak_mode:
                        say_text(f"I want to execute {command_name}")

                    arguments = self._resolve_pathlike_command_args(arguments)

                except Exception as e:
                    logger.error("Error: \n", str(e))
  • 4、try:

    • 这是一个try语句,用于尝试执行下面的代码块。
    • 如果下面的代码块出现了异常,
    • 那么跳转到 except 语句中执行相应的代码块。
  • 5、print_assistant_thoughts(self.ai_name, assistant_reply_json, cfg.speak_mode)

    • 这是一个函数调用语句,
    • 它会调用名为 print_assistant_thoughts 的函数,
    • 用于打印 Assistant 的回复内容。

print_assistant_thoughts:打印assistant的thoughts。

image-20230602170403804

传入的参数有:agent的名字name,有经过插件处理之后的json,还有speak_mode。

这个speak_mode是啥东西。

image-20230602170505288

看上面的图,应该可以分析出来,这个speak_mode只是一个布尔值。


  • 6、command_name, arguments = get_command(assistant_reply_json)
    • 这是一个函数调用语句,
    • 它会调用名为 get_command 的函数,
    • 用于从 Assistant 的回复内容中获取命令名称和参数。
    • 该函数的返回值会分别赋值给变量 command_namearguments

这是一个挺重要的函数:get_command。

image-20230602171826057

这个函数具体是什么样子呢?

def get_command(response_json: Dict):
    """Parse the response and return the command name and arguments

    Args:
        response_json (json): The response from the AI

    Returns:
        tuple: The command name and arguments

    Raises:
        json.decoder.JSONDecodeError: If the response is not valid JSON

        Exception: If any other error occurs
    """
    try:
        if "command" not in response_json:
            return "Error:", "Missing 'command' object in JSON"

        if not isinstance(response_json, dict):
            return "Error:", f"'response_json' object is not dictionary {response_json}"

        command = response_json["command"]
        if not isinstance(command, dict):
            return "Error:", "'command' object is not a dictionary"

        if "name" not in command:
            return "Error:", "Missing 'name' field in 'command' object"

        command_name = command["name"]

        # Use an empty dictionary if 'args' field is not present in 'command' object
        arguments = command.get("args", {})

        return command_name, arguments
    except json.decoder.JSONDecodeError:
        return "Error:", "Invalid JSON"
    # All other errors, return "Error: + error message"
    except Exception as e:
        return "Error:", str(e)
  • 首先判断 JSON 对象中是否存在 command 属性,如果不存在,则返回一个包含错误信息的元组。
  • 然后判断 response_json 是否为字典类型,如果不是,则返回一个包含错误信息的元组。
  • 接着获取 command 属性,并判断其是否为字典类型,如果不是,则返回一个包含错误信息的元组。
  • 然后获取 name 属性的值,作为命令名称。
  • 如果 args 属性不存在,则将参数设置为空字典。
  • 最后返回命令名称和参数。
  • 如果解析出错,则返回一个包含错误信息的元组。

这说明了一个问题,response_json当中是肯定包含command属性的。

那么他们是怎么设计prompt,让chatgpt能够吐出来command属性的呢?

这个要好好研究一下。


  • 7、if cfg.speak_mode: say_text(f"I want to execute {command_name}")
    • 这是一个条件语句,
    • 它会判断变量 cfg.speak_mode 是否为 True。
    • 如果是 True,
    • 那么调用 say_text 函数,
    • 用于将 Assistant 想要执行的命令名称通过语音输出出来。

image-20230602172248762

牛逼了,还能够进行语音播报。

这个是要研究一下,到底是怎么连接TTS的。


  • 8、arguments = self._resolve_pathlike_command_args(arguments)
    • 这是一个函数调用语句,
    • 它会调用名为 _resolve_pathlike_command_args 的方法,
    • 用于解析路径参数。

_resolve_pathlike_command_args是在agent这个类当中的方法。

这个方法的目的,前面我们从json当中解析出来的command_name和arguments。

将argument当中的路径都转换成为绝对路径。


  • 9、except Exception as e: logger.error("Error: \n", str(e))
    • 这是一个 except 语句,用于捕获 try 语句中的异常。
    • 如果 try 语句中的代码块出现了异常,那么执行相应的代码块,将异常信息记录在日志文件中。

综合来看,这段代码的作用是:

判断变量 assistant_reply_json 是否为空字典,

如果不是空字典,则进行格式验证、打印 Assistant 的回复内容、获取命令名称和参数、解析路径参数等操作,并将异常信息记录在日志文件中。如果出现异常,那么记录异常信息。

7、记录对话周期信息和下一步操作的信息

            self.log_cycle_handler.log_cycle(
                self.config.ai_name,
                self.created_at,
                self.cycle_count,
                assistant_reply_json,
                NEXT_ACTION_FILE_NAME,
            )

            logger.typewriter_log(
                "NEXT ACTION: ",
                Fore.CYAN,
                f"COMMAND = {Fore.CYAN}{command_name}{Style.RESET_ALL}  "
                f"ARGUMENTS = {Fore.CYAN}{arguments}{Style.RESET_ALL}",
            )

这段代码包含两个调用函数的语句,用于记录日志。以下是每一行代码的具体意思:

  • self.log_cycle_handler.log_cycle(self.config.ai_name, self.created_at, self.cycle_count, assistant_reply_json, NEXT_ACTION_FILE_NAME)
    • 调用 log_cycle 方法记录日志,该方法记录了与 AI 对话的一个周期的信息,
      • 包括 AI 名称、
      • 周期开始时间、
      • 周期计数、
      • AI 的回复信息
      • 以及下一步要执行的操作文件名。
  • self.log_cycle_handler:记录日志的处理程序对象。
    • self.config.ai_name:AI 的名称。
    • self.created_at:周期开始的时间。
    • self.cycle_count:周期计数。
    • assistant_reply_json:AI 的回复信息。
    • NEXT_ACTION_FILE_NAME:下一步要执行的操作文件名。

image-20230602174905358

  • logger.typewriter_log("NEXT ACTION: ", Fore.CYAN, f"COMMAND = {Fore.CYAN}{command_name}{Style.RESET_ALL} "f"ARGUMENTS = {Fore.CYAN}{arguments}{Style.RESET_ALL}")
    • 调用 typewriter_log 方法记录日志,
      • 该方法记录了下一步要执行的操作,包括命令名称和参数。
    • logger:日志记录器对象。
    • logger.typewriter_log:记录日志的方法。
    • "NEXT ACTION: ":日志记录的前缀。
    • Fore.CYAN:颜色代码,表示将后面的文本显示为青色
    • f"COMMAND = {Fore.CYAN}{command_name}{Style.RESET_ALL} "f"ARGUMENTS = {Fore.CYAN}{arguments}{Style.RESET_ALL}"
      • 待记录的文本字符串,包括命令名称和参数。
      • 其中,
        • {Fore.CYAN} 表示将后面的文本显示为青色,
        • {Style.RESET_ALL} 表示恢复默认文本样式。

8、用户输入命令的状态判断

这里有两个比较重要的变量:console_input和user_input

            if not cfg.continuous_mode and self.next_action_count == 0:
                # ### GET USER AUTHORIZATION TO EXECUTE COMMAND ###
                # Get key press: Prompt the user to press enter to continue or escape
                # to exit
                self.user_input = ""
                logger.info(
                    "Enter 'y' to authorise command, 'y -N' to run N continuous commands, 's' to run self-feedback commands, "
                    "'n' to exit program, or enter feedback for "
                    f"{self.ai_name}..."
                )
                while True:
                    if cfg.chat_messages_enabled:
                        console_input = clean_input("Waiting for your response...")
                    else:
                        console_input = clean_input(
                            Fore.MAGENTA + "Input:" + Style.RESET_ALL
                        )
                    if console_input.lower().strip() == cfg.authorise_key:
                        user_input = "GENERATE NEXT COMMAND JSON"
                        break
                    elif console_input.lower().strip() == "s":
                        logger.typewriter_log(
                            "-=-=-=-=-=-=-= THOUGHTS, REASONING, PLAN AND CRITICISM WILL NOW BE VERIFIED BY AGENT -=-=-=-=-=-=-=",
                            Fore.GREEN,
                            "",
                        )
                        thoughts = assistant_reply_json.get("thoughts", {})
                        self_feedback_resp = self.get_self_feedback(
                            thoughts, cfg.fast_llm_model
                        )
                        logger.typewriter_log(
                            f"SELF FEEDBACK: {self_feedback_resp}",
                            Fore.YELLOW,
                            "",
                        )
                        user_input = self_feedback_resp
                        command_name = "self_feedback"
                        break
                    elif console_input.lower().strip() == "":
                        logger.warn("Invalid input format.")
                        continue
                    elif console_input.lower().startswith(f"{cfg.authorise_key} -"):
                        try:
                            self.next_action_count = abs(
                                int(console_input.split(" ")[1])
                            )
                            user_input = "GENERATE NEXT COMMAND JSON"
                        except ValueError:
                            logger.warn(
                                "Invalid input format. Please enter 'y -n' where n is"
                                " the number of continuous tasks."
                            )
                            continue
                        break
                    elif console_input.lower() == cfg.exit_key:
                        user_input = "EXIT"
                        break
                    else:
                        user_input = console_input
                        command_name = "human_feedback"
                        self.log_cycle_handler.log_cycle(
                            self.config.ai_name,
                            self.created_at,
                            self.cycle_count,
                            user_input,
                            USER_INPUT_FILE_NAME,
                        )
                        break

                if user_input == "GENERATE NEXT COMMAND JSON":
                    logger.typewriter_log(
                        "-=-=-=-=-=-=-= COMMAND AUTHORISED BY USER -=-=-=-=-=-=-=",
                        Fore.MAGENTA,
                        "",
                    )
                elif user_input == "EXIT":
                    logger.info("Exiting...")
                    break
            else:
                # Print authorized commands left value
                logger.typewriter_log(
                    f"{Fore.CYAN}AUTHORISED COMMANDS LEFT: {Style.RESET_ALL}{self.next_action_count}"
                )

这段代码包含了一个 if 和一个 else 分支语句,用于获取用户的授权来执行命令,并记录用户的输入。

以下是每一行代码的具体意思:

  • if not cfg.continuous_mode and self.next_action_count == 0:

    • 如果当前不是连续模式,并且没有剩余的授权命令次数,
    • 则需要获取用户的授权来执行命令。
  • self.user_input = ""

    • 清空 self.user_input 变量,
    • 该变量用于记录用户的输入。
  • logger.info("Enter 'y' to authorise command, 'y -N' to run N continuous commands, 's' to run self-feedback commands, " 'n' to exit program, or enter feedback for " f"{self.ai_name}...")

    • 记录提示信息,提示用户输入
      • 1、授权命令
      • 2、连续命令次数
      • 3、自我反馈命令
      • 4、退出程序或输入反馈信息等选项。
  • while True:

    • 进入一个死循环,
    • 直到用户输入有效的授权命令或者其他选项。
  • 其中 cfg.chat_messages_enabled 是一个配置变量,用于控制是否将输入提示信息显示在聊天界面上

    • 如果该变量为 True,则调用 clean_input 函数显示 "Waiting for your response..." 的提示信息,并等待用户的输入。
      • clean_input 函数用于获取用户的输入,会清空输入字符串中的空格和换行符。
      • image-20230602180317366
    • 如果该变量为 False,则将输入提示信息以紫色文本的形式显示在控制台上,而不是在聊天界面上。
      • 具体来说,使用了 Python 包 colorama 中的 ForeStyle 类来显示颜色和样式。
        • 其中 Fore.MAGENTA 表示将后面的文本显示为紫色,
        • Style.RESET_ALL 表示恢复默认文本样式。
      • 调用 clean_input 函数等待用户输入后,将用户的输入赋值给变量 console_input
  • if console_input.lower().strip() == cfg.authorise_key:

    • 如果用户输入的命令是授权命令
    • 则将 user_input 变量设置为字符串 "GENERATE NEXT COMMAND JSON"
    • 表示需要生成下一步的命令 JSON
  • elif console_input.lower().strip() == "s":

    • 如果用户输入的命令是自我反馈命令
    • 则调用 get_self_feedback 方法获取自我反馈结果,
    • 并将 user_input 变量设置为自我反馈结果。
  • elif console_input.lower().strip() == "":

    • 如果用户输入为空,则记录警告信息,提示用户输入格式无效。
  • elif console_input.lower().startswith(f"{cfg.authorise_key} -"):

    • 如果用户输入的是连续授权命令,
    • 则解析出连续命令次数,
    • 并将 user_input 变量设置为字符串 "GENERATE NEXT COMMAND JSON"
    • 表示需要生成下一步的命令 JSON。
  • elif console_input.lower() == cfg.exit_key:

    • 如果用户输入的是退出程序命令,
    • 则将 user_input 变量设置为字符串 "EXIT"
    • 表示需要退出程序。
  • else:

    • 如果用户输入的是反馈信息,
    • 则将 user_input 变量设置为用户输入的字符串,
    • 并将 command_name 变量设置为字符串 "human_feedback"
    • 表示是用户的反馈信息。
  • self.log_cycle_handler.log_cycle(self.config.ai_name, self.created_at, self.cycle_count, user_input, USER_INPUT_FILE_NAME)

    • 记录用户的输入到日志文件中。
  • logger.typewriter_log(f"{Fore.CYAN}AUTHORISED COMMANDS LEFT: {Style.RESET_ALL}{self.next_action_count}")

    • 如果当前是连续模式或者还有剩余的授权命令次数,
    • 则记录剩余的授权命令次数到日志文件中。

9、命令执行 - execute command

            # Execute command
            if command_name is not None and command_name.lower().startswith("error"):
                result = (
                    f"Command {command_name} threw the following error: {arguments}"
                )
            elif command_name == "human_feedback":
                result = f"Human feedback: {user_input}"
            elif command_name == "self_feedback":
                result = f"Self feedback: {user_input}"
            else:
                for plugin in cfg.plugins:
                    if not plugin.can_handle_pre_command():
                        continue
                    command_name, arguments = plugin.pre_command(
                        command_name, arguments
                    )
                command_result = execute_command(
                    self.command_registry,
                    command_name,
                    arguments,
                    self.config.prompt_generator,
                )
                result = f"Command {command_name} returned: " f"{command_result}"

                result_tlength = count_string_tokens(
                    str(command_result), cfg.fast_llm_model
                )
                memory_tlength = count_string_tokens(
                    str(self.summary_memory), cfg.fast_llm_model
                )
                if result_tlength + memory_tlength + 600 > cfg.fast_token_limit:
                    result = f"Failure: command {command_name} returned too much output. \
                        Do not execute this command again with the same arguments."

                for plugin in cfg.plugins:
                    if not plugin.can_handle_post_command():
                        continue
                    result = plugin.post_command(command_name, result)
                if self.next_action_count > 0:
                    self.next_action_count -= 1

这段代码包含了一个 if 分支语句,用于根据不同的命令类型执行不同的操作,并记录执行结果。

以下是每一行代码的具体意思:

  • if command_name is not None and command_name.lower().startswith("error"):
    • 如果命令名称不为空,并且以 "error" 开头,
    • 将执行结果设置为一个字符串,包含了命令名称错误信息
  • elif command_name == "human_feedback":
    • 如果命令名称是 "human_feedback",
    • 则将执行结果设置为一个字符串,
    • 包含了 "Human feedback" 和用户输入的字符串。
  • elif command_name == "self_feedback":
    • 如果命令名称是 "self_feedback",
    • 则将执行结果设置为一个字符串,
    • 包含了 "Self feedback" 和自我反馈得到的结果。
  • else:
    • 如果命令名称不是上述两种情况,说明是其他类型的命令,
    • 则依次遍历配置变量 cfg.plugins 中的插件,
    • 检查每个插件是否能够处理该命令。
    • 如果插件不能够处理该命令,则跳过该插件,继续遍历下一个插件。
    • 如果插件能够处理该命令,则调用插件中的 pre_command 方法进行处理,
    • 并将处理后的命令名称和参数赋值给 command_namearguments 变量。
    • 接着调用 execute_command 函数执行命令,
    • 将执行结果赋值给 command_result 变量。
    • 最后将执行结果设置为一个字符串,
    • 包含了命令名称和执行结果。
  • result_tlength = count_string_tokens(str(command_result), cfg.fast_llm_model)
    • 计算命令执行结果中的字符串单词数,
    • 将结果赋值给 result_tlength 变量。
  • memory_tlength = count_string_tokens(str(self.summary_memory), cfg.fast_llm_model)
    • 计算自我反馈的结果中的字符串单词数,
    • 将结果赋值给 memory_tlength 变量。
  • if result_tlength + memory_tlength + 600 > cfg.fast_token_limit:
    • 如果命令执行结果和自我反馈的结果的单词数之和加上一个常量 600 大于配置变量 cfg.fast_token_limit
    • 则将执行结果设置为一个字符串,
    • 包含了命令名称和错误信息,
    • 提示用户不要再次执行该命令。
  • for plugin in cfg.plugins:
    • 依次遍历配置变量 cfg.plugins 中的插件,
    • 检查每个插件是否能够处理命令执行结果。
    • 如果插件不能够处理命令执行结果,则跳过该插件,继续遍历下一个插件。
    • 如果插件能够处理命令执行结果,则调用插件中的 post_command 方法进行处理,并将处理后的结果赋值给 result 变量。
  • if self.next_action_count > 0:
    • 如果当前是连续模式,
    • 并且还有剩余的授权命令次数,
    • 则将剩余的授权命令次数减 1。

  • if result is not None:
    • 如果命令执行后的结果不为空,则执行下面的代码块。
  • self.full_message_history.append(create_chat_message("system", result))
    • 将命令执行后的结果添加到聊天记录中。
    • 具体来说,调用了 create_chat_message 函数
      • 创建了一个包含 "system" 和命令执行结果的聊天消息对象,
      • 并将该对象添加到 self.full_message_history 列表中。
  • logger.typewriter_log("SYSTEM: ", Fore.YELLOW, result)
    • 将命令执行后的结果记录到日志文件中。
    • 具体来说,调用了 logger 模块中的 typewriter_log 函数,
    • 将日志记录的前缀设置为 "SYSTEM: ",日志记录的前景色设置为黄色,
    • 将命令执行后的结果作为日志记录的内容。
  • else::如果命令执行后的结果为空,则执行下面的代码块。
  • self.full_message_history.append(create_chat_message("system", "Unable to execute command"))
    • 将一条包含 "system" 和 "Unable to execute command" 的聊天消息添加到聊天记录中。
  • logger.typewriter_log("SYSTEM: ", Fore.YELLOW, "Unable to execute command")
    • 将 "Unable to execute command" 记录到日志文件中。具体来说,
    • 调用了 logger 模块中的 typewriter_log 函数,
    • 将日志记录的前缀设置为 "SYSTEM: ",日志记录的前景色设置为黄色,
    • 将 "Unable to execute command" 作为日志记录的内容。

_resolve_pathlike_command_args方法

代码

    def _resolve_pathlike_command_args(self, command_args):
        if "directory" in command_args and command_args["directory"] in {"", "/"}:
            command_args["directory"] = str(self.workspace.root)
        else:
            for pathlike in ["filename", "directory", "clone_path"]:
                if pathlike in command_args:
                    command_args[pathlike] = str(
                        self.workspace.get_path(command_args[pathlike])
                    )
        return command_args

这段代码实现了一个名为 _resolve_pathlike_command_args 的方法,用于解析命令参数中的路径参数

该方法接受一个名为 command_args 的参数,应该是一个包含命令参数的字典对象

方法的作用是将命令参数中的路径参数转换为绝对路径

具体来说,该方法的实现如下:

  • 方法签名:def _resolve_pathlike_command_args(self, command_args)
  • 方法参数:
    • command_args:待解析的命令参数,类型为 dict
  • 方法返回值:一个字典对象,包含解析后的命令参数。
  • 方法实现:
    • 首先判断命令参数中是否包含 directory 属性,并且其值为 ""/
      • 如果是,则将其替换为工作区根目录的绝对路径
    • 否则,对于命令参数中的每个路径属性("filename", "directory", "clone_path"),
      • 将其值转换为绝对路径,
      • 更新命令参数中对应的属性。
    • 最后返回更新后的命令参数字典。

get_self_feedback方法

    def get_self_feedback(self, thoughts: dict, llm_model: str) -> str:
        """Generates a feedback response based on the provided thoughts dictionary.
        This method takes in a dictionary of thoughts containing keys such as 'reasoning',
        'plan', 'thoughts', and 'criticism'. It combines these elements into a single
        feedback message and uses the create_chat_completion() function to generate a
        response based on the input message.
        Args:
            thoughts (dict): A dictionary containing thought elements like reasoning,
            plan, thoughts, and criticism.
        Returns:
            str: A feedback response generated using the provided thoughts dictionary.
        """
        ai_role = self.config.ai_role

        feedback_prompt = f"Below is a message from me, an AI Agent, assuming the role of {ai_role}. whilst keeping knowledge of my slight limitations as an AI Agent Please evaluate my thought process, reasoning, and plan, and provide a concise paragraph outlining potential improvements. Consider adding or removing ideas that do not align with my role and explaining why, prioritizing thoughts based on their significance, or simply refining my overall thought process."
        reasoning = thoughts.get("reasoning", "")
        plan = thoughts.get("plan", "")
        thought = thoughts.get("thoughts", "")
        feedback_thoughts = thought + reasoning + plan
        return create_chat_completion(
            [{"role": "user", "content": feedback_prompt + feedback_thoughts}],
            llm_model,
        )

这段代码定义了一个名为 get_self_feedback 的方法,用于生成一个反馈响应,基于提供的思考字典

以下是每一行代码的具体意思:

  • def get_self_feedback(self, thoughts: dict, llm_model: str) -> str:
    • 定义了一个名为 get_self_feedback 的方法,
    • 该方法需要三个参数:selfthoughts,和 llm_model
    • 其中,self 表示当前对象,thoughts 是一个包含思考元素的字典,llm_model 是一个字符串,
    • 表示要使用的语言模型。
  • """Generates a feedback response based on the provided thoughts dictionary.
    • 该行代码是一个文档字符串,用于描述该方法的功能。
  • ai_role = self.config.ai_role
    • 获取配置变量 self.config.ai_role 的值,
    • 并将其赋值给变量 ai_role
    • 该变量表示 AI 代理的角色。
  • feedback_prompt = f"Below is a message from me, an AI Agent, assuming the role of {ai_role}. whilst keeping knowledge of my slight limitations as an AI Agent Please evaluate my thought process, reasoning, and plan, and provide a concise paragraph outlining potential improvements. Consider adding or removing ideas that do not align with my role and explaining why, prioritizing thoughts based on their significance, or simply refining my overall thought process."
    • 设置一个反馈提示变量 feedback_prompt
    • 用于提示提示用户评估 AI 代理的思考过程和计划,
    • 并提供改进意见。
  • reasoning = thoughts.get("reasoning", "")
    • 从思考字典 thoughts 中获取键为 "reasoning" 的值,
    • 并将其赋值给变量 reasoning
    • 如果该键不存在,则将 reasoning 的值设置为空字符串。
  • plan = thoughts.get("plan", "")
    • 从思考字典 thoughts 中获取键为 "plan" 的值,
    • 并将其赋值给变量 plan
    • 如果该键不存在,则将 plan 的值设置为空字符串。
  • thought = thoughts.get("thoughts", "")
    • 从思考字典 thoughts 中获取键为 "thoughts" 的值,
    • 并将其赋值给变量 thought
    • 如果该键不存在,则将 thought 的值设置为空字符串。
  • feedback_thoughts = thought + reasoning + plan
    • thoughtreasoningplan 三个字符串拼接起来,
    • 并将结果赋值给变量 feedback_thoughts
  • return create_chat_completion([{"role": "user", "content": feedback_prompt + feedback_thoughts}], llm_model)
    • 调用 create_chat_completion 函数生成一个反馈响应,并将该响应作为方法的返回值。
    • 具体来说,将反馈提示 feedback_prompt 和思考内容 feedback_thoughts 组合成一个包含 "user" 角色和内容的字典,
    • 并作为参数传递给 create_chat_completion 函数,
    • 同时将语言模型 llm_model 作为另一个参数传递给函数。
    • 函数将使用语言模型生成一个响应,并将其作为字符串返回。

标签:autogpt,name,cfg,self,agent,json,command,thoughts
From: https://www.cnblogs.com/gnuzsx/p/17452745.html

相关文章

  • ubuntu22.04安装zabbix-agent2
    在库中https://repo.zabbix.com/zabbix/找到自己对应的zabbix的版本这里以6.2.4版本为例找到6.2版本的文件夹然后进入到对应的目录中https://repo.zabbix.com/zabbix/6.2/ubuntu/pool/main/z/zabbix-release/找到自己服务器的版本对应的版本我这里的服务器是22.04版本的......
  • Edge浏览器获取Cookie和User-Agent方法
    Edge浏览器获取Cookie和User-Agent方法1、在浏览器界面点击F12或Ctrl+Shift+I或;2、找到网络,如界面未显示则可能被隐藏了,点击》或右边得+号,找到即可;3、点击按钮刷新浏览器或F5或Ctrl+R;4、在筛选器点击全部显示;5、在名称里找到界面的网址,一般情况默认第1个;6、在......
  • Voyager:AI智能体自主写代码独霸我的世界,完胜AutoGPT
    继斯坦福的25人小镇后,AI智能体又出爆款新作了。最近,英伟达首席科学家JimFan等人把GPT-4整进了「我的世界」(Minecraft)——提出了一个全新的AI智能体Voyager。Voyager的厉害之处在于,它不仅性能完胜AutoGPT,而且还可以在游戏中进行全场景的终身学习!比起之前的SOTA,Voyager获得的物......
  • Get-MMagent 是一个命令,通常用于查询与 Microsoft Management Agent (MMAgent) 相关的
    Get-MMagent是一个命令,通常用于查询与MicrosoftManagementAgent(MMAgent)相关的属性和配置信息。MMAgent是一款基于云计算技术的软件代理程序,用于帮助配置管理、安全性和监视方案。在Windows平台上,MMAgent通常用于实现高效的云端管理和自动化操作,包括AzureMonitor等相......
  • magento后台发布产品前台缺搜索不到
    magento后台发布产品前台缺搜索不到未完待续1.缓存2索引3建目录的时候,注意建店铺的目录而不是总站的目录4添加商品的时候,注意添加到店铺的目录5商品库存6店铺设置为启用---------------------------------------------------------------------------视频教程http://www.soku......
  • selenium获取user-agent
    网上找了好多资料,都是说怎么设置请求头的信息。却没有说怎么获取由selenium提交的请求头。尝试了好久,总结了一个办法,下面上代码:fromseleniumimportwebdriverdriver_path=r'F:\driver\chromedriver.exe'#这是chrome驱动路径#自定义代理IP及请求头。chromeOpt......
  • serverAgent运行后,执行jmeter脚本serverAgent闪退问题
     系统的jre环境和serverAgent所需的jre不匹配,根据网上搜的办法,下载一个低版本的jre,然后放到serverAgent目录下:步骤1、下载低版本jre:下载的是18.0.2.1版本2、下载后,放到serverAgent文件路径下 3、用notepad++打开startAgent.bat,添加jre的路径:@echooffcdD:\apache-jme......
  • OEM13.5安装推送客户端报错Executing command emctl secure agent
     OEM13.5安装推送客户端报错Executingcommandemctlsecureagent 现象: 建议部分显示如下方案:1../emctlsecureagent2../emctlstartagent3../emctlconfigagentaddinternaltargets  结合EM13c:EnterpriseManagerCloudControlAgentInstallation......
  • AutoGPT与LLM Agent解析
    前两周AutoGPT,BabyAGI等项目异常火爆,周末也正好花了点时间来看了下这些AIagent类项目的代码,写篇文章来总结一下对于当前这类项目进展的技术角度认识和思考,与大家一同交流。从语言理解到任务执行之前大多相关项目和产品都主要利用了GPT模型的语言理解方面的能力,例如生成文......
  • 【Windows】ApifoxAppAgent开机启动项删除
    ✨ApifoxAppAgent首先建议使用GeekUninstaller卸载卸载会检测软件残留痕迹并清除然而在开机启动项仍然存在名为ApifoxAppAgent残留项✨解决方案搜索注册表编辑器或者regedit在注册表编辑器中,定位到HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run......