使用CNN做文本分类
from __future__ import division, print_function, absolute_import
import tensorflow as tf
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_1d, global_max_pool
from tflearn.layers.merge_ops import merge
from tflearn.layers.estimator import regression
from tflearn.data_utils import to_categorical, pad_sequences
from tflearn.datasets import imdb
import pickle
import numpy as np
"""
还是加载imdb.pkl数据
"""
train, test, _ = imdb.load_data(path='imdb.pkl', n_words=10000,
valid_portion=0.1)
trainX, trainY = train
testX, testY = test
"""
转化为固定长度的向量,这里固定长度为100
"""
trainX = pad_sequences(trainX, maxlen=100, value=0.)
testX = pad_sequences(testX, maxlen=100, value=0.)
"""
二值化向量
"""
trainY = to_categorical(trainY, nb_classes=2)
testY = to_categorical(testY, nb_classes=2)
"""
构建卷积神经网络,这里卷积神经网网络为1d卷积
"""
network = input_data(shape=[None, 100], name='input')
network = tflearn.embedding(network, input_dim=10000, output_dim=128)
branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2")
branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2")
branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2")
network = merge([branch1, branch2, branch3], mode='concat', axis=1)
network = tf.expand_dims(network, 2)
network = global_max_pool(network)
network = dropout(network, 0.5)
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.001,
loss='categorical_crossentropy', name='target')
"""
训练开始
"""
model = tflearn.DNN(network, tensorboard_verbose=0)
model.fit(trainX, trainY, n_epoch = 1, shuffle=True, validation_set=(testX, testY), show_metric=True, batch_size=32)
"""
模型保存
"""
model.save("cnn.model")
"""
做测试使用
"""
test=np.linspace(1,101,100).reshape(1,100)
print("测试结果:",model.predict(test))
模型训练结果以及模型保存情况:
Training Step: 697 | total loss: 0.40838 | time: 79.960s
| Adam | epoch: 001 | loss: 0.40838 - acc: 0.8247 -- iter: 22304/22500
Training Step: 698 | total loss: 0.39128 | time: 80.112s
| Adam | epoch: 001 | loss: 0.39128 - acc: 0.8329 -- iter: 22336/22500
Training Step: 699 | total loss: 0.38896 | time: 80.298s
| Adam | epoch: 001 | loss: 0.38896 - acc: 0.8402 -- iter: 22368/22500
Training Step: 700 | total loss: 0.39468 | time: 80.456s
| Adam | epoch: 001 | loss: 0.39468 - acc: 0.8343 -- iter: 22400/22500
Training Step: 701 | total loss: 0.39380 | time: 80.640s
| Adam | epoch: 001 | loss: 0.39380 - acc: 0.8353 -- iter: 22432/22500
Training Step: 702 | total loss: 0.38980 | time: 80.787s
| Adam | epoch: 001 | loss: 0.38980 - acc: 0.8392 -- iter: 22464/22500
Training Step: 703 | total loss: 0.39020 | time: 80.970s
| Adam | epoch: 001 | loss: 0.39020 - acc: 0.8397 -- iter: 22496/22500
Training Step: 704 | total loss: 0.38543 | time: 82.891s
| Adam | epoch: 001 | loss: 0.38543 - acc: 0.8370 | val_loss: 0.44625 - val_acc: 0.7880 -- iter: 22500/22500
--
测试结果: [[ 0.77064246 0.2293576 ]]
加载模型并做预测:
import tensorflow as tf
import numpy as np
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_1d, global_max_pool
from tflearn.layers.merge_ops import merge
from tflearn.layers.estimator import regression
"""
跟训练模型的网络结构一样
"""
network = input_data(shape=[None, 100], name='input')
network = tflearn.embedding(network, input_dim=10000, output_dim=128)
branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2")
branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2")
branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2")
network = merge([branch1, branch2, branch3], mode='concat', axis=1)
network = tf.expand_dims(network, 2)
network = global_max_pool(network)
network = dropout(network, 0.5)
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.001,
loss='categorical_crossentropy', name='target')
"""
加载模型做预测
"""
model = tflearn.DNN(network)
model.load("cnn.model")
test=np.linspace(1,101,100).reshape(1,100)
# Predict [[ 0.7725634 0.22743654]]
prediction = model.predict(test)
print("模型预测结果",prediction)
结果:
2017-10-15 19:35:14.940689: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
模型预测结果 [[ 0.77064246 0.2293576 ]]
Process finished with exit code 0
基于tflearn高阶api怎么做文本分类基本上完成
标签:loss,22500,network,conv,卷积,tflearn,CNN,import,文本 From: https://blog.51cto.com/u_11908275/6386900