首页 > 其他分享 >tflearn 中文汉字识别模型试验汇总

tflearn 中文汉字识别模型试验汇总

时间:2023-05-31 12:35:39浏览次数:55  
标签:acc loss network val -- 汇总 模型试验 19094 tflearn

def get_model(width, height, classes=40):
    # TODO, modify model
    # Building 'VGG Network'
    network = input_data(shape=[None, width, height, 1])  # if RGB, 224,224,3
    network = conv_2d(network, 64, 3, activation='relu')
    #network = conv_2d(network, 64, 3, activation='relu')
    network = max_pool_2d(network, 2, strides=2)
    network = conv_2d(network, 128, 3, activation='relu')
    #network = conv_2d(network, 128, 3, activation='relu')
    network = max_pool_2d(network, 2, strides=2)
    network = conv_2d(network, 256, 3, activation='relu')
    #network = conv_2d(network, 256, 3, activation='relu')
    #network = conv_2d(network, 256, 3, activation='relu')
    network = max_pool_2d(network, 2, strides=2)
    network = conv_2d(network, 512, 3, 2, activation='relu')
    # network = conv_2d(network, 512, 3, activation='relu')
    # network = conv_2d(network, 512, 3, activation='relu')
    # network = max_pool_2d(network, 2, strides=2)
    # network = conv_2d(network, 512, 3, activation='relu')
    # network = conv_2d(network, 512, 3, activation='relu')
    # network = conv_2d(network, 512, 3, activation='relu')
    network = max_pool_2d(network, 2, strides=2)
    # network = fully_connected(network, 4096, activation='relu')
    # network = dropout(network, 0.5)
    #network = fully_connected(network, 1024, activation='relu')
    network = fully_connected(network, 2048, activation='relu')
    network = dropout(network, 0.8)
    network = fully_connected(network, classes, activation='softmax')
    network = regression(network, optimizer='rmsprop',
                         loss='categorical_crossentropy',
                         learning_rate=0.0001)
    model = tflearn.DNN(network, checkpoint_path='checkpoint',
                        max_checkpoints=1, tensorboard_verbose=1)
    return model

 

if __name__ == "__main__":
    width, height = 32, 32
    X, Y, org_labels = load_data(dirname="data", resize_pics=(width, height))
    trainX, testX, trainY, testY = train_test_split(X, Y, test_size=0.2, random_state=666)
    print("sample data:")
    print(trainX[0])
    print(trainY[0])
    print(testX[-1])
    print(testY[-1])

    model = get_model(width, height, classes=100)

    filename = 'cnn_handwrite-acc0.8.tflearn'
    # try to load model and resume training
    #try:
    #    model.load(filename)
    #    print("Model loaded OK. Resume training!")
    #except:
    #    pass

    # Initialize our callback with desired accuracy threshold.
    early_stopping_cb = EarlyStoppingCallback(val_acc_thresh=0.9)
    try:
        model.fit(trainX, trainY, validation_set=(testX, testY), n_epoch=500, shuffle=True,
                  snapshot_epoch=True, # Snapshot (save & evaluate) model every epoch.
                  show_metric=True, batch_size=32, callbacks=early_stopping_cb, run_id='cnn_handwrite')
    except StopIteration as e:
        print("OK, stop iterate!Good!")

    model.save(filename)

    # predict all data and calculate confusion_matrix
    model.load(filename)

    pro_arr =model.predict(X)
    predict_labels = np.argmax(pro_arr, axis=1)
    print(classification_report(org_labels, predict_labels))
    print(confusion_matrix(org_labels, predict_labels))

 

上述模型效果:

---------------------------------
Training samples: 19094
Validation samples: 4774
--
Training Step: 597  | total loss: 3.60744 | time: 110.471s
| RMSProp | epoch: 001 | loss: 3.60744 - acc: 0.1455 | val_loss: 3.64326 - val_acc: 0.1257 -- iter: 19094/19094
--
Terminating training at the end of epoch 1
Training Step: 1194  | total loss: 1.74615 | time: 115.902s
| RMSProp | epoch: 002 | loss: 1.74615 - acc: 0.4955 | val_loss: 1.56680 - val_acc: 0.5840 -- iter: 19094/19094
--
Terminating training at the end of epoch 2
Training Step: 1791  | total loss: 1.06401 | time: 117.538s
| RMSProp | epoch: 003 | loss: 1.06401 - acc: 0.7183 | val_loss: 1.02607 - val_acc: 0.6986 -- iter: 19094/19094

。。。

 

试试mnist直接拿过来:

def get_model(width, height, classes=40):
    # TODO, modify model
    # Real-time data preprocessing
    img_prep = tflearn.ImagePreprocessing()
    img_prep.add_featurewise_zero_center(per_channel=True)
    network = input_data(shape=[None, width, height, 1]) #, data_preprocessing=img_prep)  # if RGB, 224,224,3

    network = conv_2d(network, 32, 3, activation='relu', regularizer="L2")
    network = max_pool_2d(network, 2)
    network = local_response_normalization(network)
    network = conv_2d(network, 64, 3, activation='relu', regularizer="L2")
    network = max_pool_2d(network, 2)
    network = local_response_normalization(network)
    network = fully_connected(network, 128, activation='tanh')
    network = dropout(network, 0.8)
    network = fully_connected(network, 256, activation='tanh')
    network = dropout(network, 0.8)
    network = fully_connected(network, classes, activation='softmax')
    network = regression(network, optimizer='adam', learning_rate=0.01,
                         loss='categorical_crossentropy', name='target')
    # Training
    model = tflearn.DNN(network, tensorboard_verbose=0)
    return model

 模型效果:很难收敛!!!

--
Training Step: 597  | total loss: 5.79258 | time: 26.039ss
| Adam | epoch: 001 | loss: 5.79258 - acc: 0.0064 | val_loss: 5.55333 - val_acc: 0.0107 -- iter: 19094/19094
--
Terminating training at the end of epoch 1
Training Step: 1194  | total loss: 5.87951 | time: 25.335s
| Adam | epoch: 002 | loss: 5.87951 - acc: 0.0084 | val_loss: 5.57970 - val_acc: 0.0105 -- iter: 19094/19094
--
Terminating training at the end of epoch 2
Training Step: 1791  | total loss: 5.93476 | time: 26.012s
| Adam | epoch: 003 | loss: 5.93476 - acc: 0.0124 | val_loss: 5.60627 - val_acc: 0.0107 -- iter: 19094/19094
--
Terminating training at the end of epoch 3
Training Step: 2388  | total loss: 5.76588 | time: 25.359s
| Adam | epoch: 004 | loss: 5.76588 - acc: 0.0116 | val_loss: 5.67958 - val_acc: 0.0119 -- iter: 19094/19094
--
Terminating training at the end of epoch 4
Training Step: 2985  | total loss: 5.87640 | time: 25.208s
| Adam | epoch: 005 | loss: 5.87640 - acc: 0.0111 | val_loss: 5.74356 - val_acc: 0.0101 -- iter: 19094/19094
--
Terminating training at the end of epoch 5
Training Step: 3582  | total loss: 6.01014 | time: 25.617ss
| Adam | epoch: 006 | loss: 6.01014 - acc: 0.0123 | val_loss: 5.68011 - val_acc: 0.0098 -- iter: 19094/19094
--
Terminating training at the end of epoch 6
Training Step: 4179  | total loss: 5.80083 | time: 25.633ss
| Adam | epoch: 007 | loss: 5.80083 - acc: 0.0067 | val_loss: 5.40268 - val_acc: 0.0088 -- iter: 19094/19094
--
Terminating training at the end of epoch 7
Training Step: 4776  | total loss: 5.90476 | time: 25.245ss
| Adam | epoch: 008 | loss: 5.90476 - acc: 0.0052 | val_loss: 5.69640 - val_acc: 0.0090 -- iter: 19094/19094
--
Terminating training at the end of epoch 8
Training Step: 5373  | total loss: 5.95897 | time: 25.667s
| Adam | epoch: 009 | loss: 5.95897 - acc: 0.0057 | val_loss: 5.58915 - val_acc: 0.0111 -- iter: 19094/19094
--
Terminating training at the end of epoch 9
Training Step: 5970  | total loss: 5.77673 | time: 25.025s
| Adam | epoch: 010 | loss: 5.77673 - acc: 0.0091 | val_loss: 5.52967 - val_acc: 0.0096 -- iter: 19094/19094
--
Terminating training at the end of epoch 10
Training Step: 6567  | total loss: 6.01010 | time: 25.004s
| Adam | epoch: 011 | loss: 6.01010 - acc: 0.0073 | val_loss: 5.84569 - val_acc: 0.0109 -- iter: 19094/19094
--
Terminating training at the end of epoch 11
Training Step: 7164  | total loss: 5.94524 | time: 25.614ss
| Adam | epoch: 012 | loss: 5.94524 - acc: 0.0120 | val_loss: 5.50813 - val_acc: 0.0101 -- iter: 19094/19094
--
Terminating training at the end of epoch 12
Training Step: 7761  | total loss: 5.75621 | time: 25.267ss
| Adam | epoch: 013 | loss: 5.75621 - acc: 0.0093 | val_loss: 5.52859 - val_acc: 0.0101 -- iter: 19094/19094
--
Terminating training at the end of epoch 13
Training Step: 8358  | total loss: 5.88941 | time: 25.958ss
| Adam | epoch: 014 | loss: 5.88941 - acc: 0.0082 | val_loss: 5.67036 - val_acc: 0.0067 -- iter: 19094/19094
--
Terminating training at the end of epoch 14
 Training Step: 8955  | total loss: 5.80860 | time: 24.907s
| Adam | epoch: 015 | loss: 5.80860 - acc: 0.0101 | val_loss: 5.38732 - val_acc: 0.0107 -- iter: 19094/19094
--
Terminating training at the end of epoch 15
Training Step: 9552  | total loss: 5.93827 | time: 25.302s
| Adam | epoch: 016 | loss: 5.93827 - acc: 0.0163 | val_loss: 5.63285 - val_acc: 0.0101 -- iter: 19094/19094
--

 

接下来看看其他模型:

def get_model(width, height, classes=40):
    # TODO, modify model
    # Building 'VGG Network'
    network = input_data(shape=[None, width, height, 1])  # if RGB, 224,224,3
    network = conv_2d(network, 64, 3, activation='relu')
    #network = conv_2d(network, 64, 3, activation='relu')
    network = max_pool_2d(network, 2, strides=2)
    network = conv_2d(network, 128, 3, activation='relu')
    #network = conv_2d(network, 128, 3, activation='relu')
    network = max_pool_2d(network, 2, strides=2)
    netword = tflearn.batch_normalization(network)
    network = fully_connected(network, 1024, activation='relu')
    network = dropout(network, 0.8)
    network = fully_connected(network, classes, activation='softmax')
    network = regression(network, optimizer='rmsprop',
                         loss='categorical_crossentropy',
                         learning_rate=0.0001)
    model = tflearn.DNN(network, checkpoint_path='checkpoint',
                        max_checkpoints=1, tensorboard_verbose=1)
    return model

 上述模型效果:

--
Training Step: 597  | total loss: 2.64693 | time: 280.077ss
| RMSProp | epoch: 001 | loss: 2.64693 - acc: 0.3916 | val_loss: 2.51221 - val_acc: 0.4246 -- iter: 19094/19094
--
Terminating training at the end of epoch 1
Training Step: 1194  | total loss: 1.30175 | time: 317.832ss
| RMSProp | epoch: 002 | loss: 1.30175 - acc: 0.6803 | val_loss: 1.17014 - val_acc: 0.6963 -- iter: 19094/19094
--
Terminating training at the end of epoch 2
Training Step: 1791  | total loss: 0.80158 | time: 330.904ss
| RMSProp | epoch: 003 | loss: 0.80158 - acc: 0.7837 | val_loss: 0.82845 - val_acc: 0.7713 -- iter: 19094/19094

 

Inception模型:

def get_model(width, height, classes=40):
    # TODO, modify model
    # Building 'VGG Network'
    network = input_data(shape=[None, width, height, 1])  # if RGB, 224,224,3
    network = conv_2d(network, 64, 3, activation='relu')
    inception_3b_1_1 = conv_2d(network, 64, filter_size=1, activation='relu', name='inception_3b_1_1')
    inception_3b_3_3 = conv_2d(network, 64, filter_size=3, activation='relu', name='inception_3b_3_3')
    inception_3b_5_5 = conv_2d(network, 64, filter_size=5, activation='relu', name='inception_3b_5_5')
    inception_3b_output = merge([inception_3b_1_1, inception_3b_3_3, inception_3b_5_5], mode='concat', axis=3, name='inception_3b_output')
    network = max_pool_2d(inception_3b_output, kernel_size=3, strides=2, name='pool3_3_3')
    network = dropout(network, 0.4)
    network = fully_connected(network, classes, activation='softmax')
    network = regression(network, optimizer='momentum',
                     loss='categorical_crossentropy',
                     learning_rate=0.001)
    #network = regression(network, optimizer='rmsprop',
    #                     loss='categorical_crossentropy',
    #                     learning_rate=0.0001)
    model = tflearn.DNN(network, checkpoint_path='checkpoint',
                        max_checkpoints=1, tensorboard_verbose=1)
    return model

上述模型效果:

--
Training Step: 597  | total loss: 4.36442 | time: 342.271ss
| Momentum | epoch: 001 | loss: 4.36442 - acc: 0.0578 | val_loss: 4.30726 - val_acc: 0.1274 -- iter: 19094/19094
--
Terminating training at the end of epoch 1
Training Step: 1193  | total loss: 3.02893 | time: 322.366ss
Training Step: 1194  | total loss: 3.00916 | time: 339.206ser: 19072/19094
| Momentum | epoch: 002 | loss: 3.00916 - acc: 0.2988 | val_loss: 2.71907 - val_acc: 0.4845 -- iter: 19094/19094
--
Terminating training at the end of epoch 2
Training Step: 1791  | total loss: 2.23406 | time: 347.633ss
| Momentum | epoch: 003 | loss: 2.23406 - acc: 0.4559 | val_loss: 1.84004 - val_acc: 0.5888 -- iter: 19094/19094

 

换成avg pool跑起来很慢:

#network = max_pool_2d(inception_3b_output, kernel_size=3, strides=2, name='pool3_3_3')
    network = avg_pool_2d(inception_3b_output, kernel_size=7, strides=1) # acc: 0.0217 | val_loss: 4.50712 - val_acc: 0.0630 -- iter: 19094/19094

花费时间长,而且看不到什么效果:

--
 Training Step: 597  | total loss: 4.53236 | time: 786.035s
| Momentum | epoch: 001 | loss: 4.53236 - acc: 0.0217 | val_loss: 4.50712 - val_acc: 0.0630 -- iter: 19094/19094
--
Terminating training at the end of epoch 1
^Caining Step: 692  | total loss: 4.49201 | time: 111.106ss
| Momentum | epoch: 002 | loss: 4.49201 - acc: 0.0247 -- iter: 03040/19094
  Successfully left training! Final model accuracy: 0.0246666166931

 

resnet结构:

def get_model(width, height, classes=40):
    # TODO, modify model
    # Building 'VGG Network'
    network = input_data(shape=[None, width, height, 1])  # if RGB, 224,224,3
    # Residual blocks  
    # 32 layers: n=5, 56 layers: n=9, 110 layers: n=18  
    n = 2
    net = tflearn.conv_2d(network, 16, 3, regularizer='L2', weight_decay=0.0001)
    net = tflearn.residual_block(net, n, 16)
    net = tflearn.residual_block(net, 1, 32, downsample=True)
    net = tflearn.residual_block(net, n-1, 32)
    net = tflearn.residual_block(net, 1, 64, downsample=True)
    net = tflearn.residual_block(net, n-1, 64)
    net = tflearn.batch_normalization(net)
    net = tflearn.activation(net, 'relu')
    net = tflearn.global_avg_pool(net)
    # Regression  
    net = tflearn.fully_connected(net, classes, activation='softmax')
    mom = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=32000, staircase=True)
    net = tflearn.regression(net, optimizer=mom,
                             loss='categorical_crossentropy')
    # Training  
    model = tflearn.DNN(net, checkpoint_path='model_resnet_cifar10',
                        max_checkpoints=10, tensorboard_verbose=0,
                        clip_gradients=0.)
    return model

--
Terminating training at the end of epoch 7
Training Step: 4776  | total loss: 0.13311 | time: 132.182ss
| Momentum | epoch: 008 | loss: 0.13311 - acc: 0.9561 | val_loss: 0.22734 - val_acc: 0.9370 -- iter: 19094/19094
--
Terminating training at the end of epoch 8
Successfully left training! Final model accuracy: 0.95614439249
OK, stop iterate!Good!
avg / total       0.97      0.96      0.96     23868

 

resnet加深结构:

def get_model(width, height, classes=40):
    # TODO, modify model
    # Building 'VGG Network'
    network = input_data(shape=[None, width, height, 1])  # if RGB, 224,224,3
    # Building Residual Network
    net = tflearn.conv_2d(network, 64, 3, activation='relu', bias=False)
    # Residual blocks
    net = tflearn.residual_bottleneck(net, 3, 16, 64)
    net = tflearn.residual_bottleneck(net, 1, 32, 128, downsample=True)
    net = tflearn.residual_bottleneck(net, 2, 32, 128)
    net = tflearn.residual_bottleneck(net, 1, 64, 256, downsample=True)
    net = tflearn.residual_bottleneck(net, 2, 64, 256)
    net = tflearn.batch_normalization(net)
    net = tflearn.activation(net, 'relu')
    net = tflearn.global_avg_pool(net)
    # Regression
    net = tflearn.fully_connected(net, classes, activation='softmax')
    net = tflearn.regression(net, optimizer='momentum',
                             loss='categorical_crossentropy',
                             learning_rate=0.1)
    # Training
    model = tflearn.DNN(net, checkpoint_path='model_resnet_mnist',
                        max_checkpoints=10, tensorboard_verbose=0)
    return model

结果是训练的时间更久了。

--
Terminating training at the end of epoch 5
 Training Step: 3582  | total loss: 0.14701 | time: 313.084s
| Momentum | epoch: 006 | loss: 0.14701 - acc: 0.9516 | val_loss: 0.30464 - val_acc: 0.9103 -- iter: 19094/19094
--
Terminating training at the end of epoch 6
Successfully left training! Final model accuracy: 0.951571881771
OK, stop iterate!Good!

avg / total       0.94      0.93      0.93     23868

resnet加入预处理:

def get_model(width, height, classes=40):
    # TODO, modify model
    # Real-time data preprocessing
    img_prep = tflearn.ImagePreprocessing()
    img_prep.add_featurewise_zero_center(per_channel=True)
    network = input_data(shape=[None, width, height, 1], data_preprocessing=img_prep)  # if RGB, 224,224,3

    ...

效果:也还是很不错!

--
 Training Step: 597  | total loss: 1.12591 | time: 312.814s
| Momentum | epoch: 001 | loss: 1.12591 - acc: 0.6664 | val_loss: 1.86609 - val_acc: 0.5209 -- iter: 19094/19094
--
Terminating training at the end of epoch 1
 Training Step: 1194  | total loss: 0.61108 | time: 312.415s
| Momentum | epoch: 002 | loss: 0.61108 - acc: 0.8291 | val_loss: 0.56165 - val_acc: 0.8395 -- iter: 19094/19094

 

highway模型:又快又好!

def get_model(width, height, classes=40):
    # TODO, modify model
    network = input_data(shape=[None, width, height, 1])  # if RGB, 224,224,3

    # Building convolutional network
    #highway convolutions with pooling and dropout
    for i in range(3):
        for j in [3, 2, 1]:
            network = highway_conv_2d(network, 16, j, activation='elu')
        network = max_pool_2d(network, 2)
        network = batch_normalization(network)
    network = fully_connected(network, 128, activation='elu')
    network = fully_connected(network, 256, activation='elu')
    network = fully_connected(network, classes, activation='softmax')
    network = regression(network, optimizer='adam', learning_rate=0.01,
                         loss='categorical_crossentropy', name='target')

    model = tflearn.DNN(network, tensorboard_verbose=0)
    return model

 

--
Training Step: 597  | total loss: 0.95732 | time: 58.519ss
| Adam | epoch: 001 | loss: 0.95732 - acc: 0.7289 | val_loss: 1.46561 - val_acc: 0.6464 -- iter: 19094/19094
--
Terminating training at the end of epoch 1
Training Step: 1194  | total loss: 0.72415 | time: 57.346ss
| Adam | epoch: 002 | loss: 0.72415 - acc: 0.8067 | val_loss: 1.42666 - val_acc: 0.6919 -- iter: 19094/19094
--
Terminating training at the end of epoch 2
Training Step: 1791  | total loss: 0.78836 | time: 58.067ss
| Adam | epoch: 003 | loss: 0.78836 - acc: 0.8150 | val_loss: 1.05735 - val_acc: 0.7725 -- iter: 19094/19094

 

最后看看cifar10模型效果:

def get_model(width, height, classes=40):
    # TODO, modify model
    # Real-time data preprocessing
    img_prep = tflearn.ImagePreprocessing()
    img_prep.add_featurewise_zero_center(per_channel=True)
    img_prep.add_featurewise_stdnorm()
    network = input_data(shape=[None, width, height, 1], data_preprocessing=img_prep)  # if RGB, 224,224,3
    network = conv_2d(network, 32, 3, activation='relu')
    network = max_pool_2d(network, 2)
    network = conv_2d(network, 64, 3, activation='relu')
    network = conv_2d(network, 64, 3, activation='relu')
    network = max_pool_2d(network, 2)
    network = fully_connected(network, 512, activation='relu')
    network = dropout(network, 0.5)
    network = fully_connected(network, classes, activation='softmax')
    network = regression(network, optimizer='adam',
                         loss='categorical_crossentropy',
                         learning_rate=0.001)
    model = tflearn.DNN(network, tensorboard_verbose=0)
    return model

效果也很不错!又快又好:

--
Training Step: 597  | total loss: 0.70663 | time: 37.980ss
| Adam | epoch: 001 | loss: 0.70663 - acc: 0.7995 | val_loss: 0.55688 - val_acc: 0.8412 -- iter: 19094/19094
--
Terminating training at the end of epoch 1
Training Step: 1194  | total loss: 0.42443 | time: 37.595s
| Adam | epoch: 002 | loss: 0.42443 - acc: 0.8638 | val_loss: 0.43501 - val_acc: 0.8789 -- iter: 19094/19094
--
Terminating training at the end of epoch 2
 Training Step: 1791  | total loss: 0.37865 | time: 37.516s
| Adam | epoch: 003 | loss: 0.37865 - acc: 0.9130 | val_loss: 0.30865 - val_acc: 0.9120 -- iter: 19094/19094

 

 densenet效果

def get_model(width, height, classes=40):
    # Growth Rate (12, 16, 32, ...)
    k = 12
    # Depth (40, 100, ...)
    L = 40
    nb_layers = int((L - 4) / 3)
    network = input_data(shape=[None, width, height, 1])
    net = tflearn.conv_2d(network, 16, 3, regularizer='L2', weight_decay=0.0001)
    net = tflearn.densenet_block(net, nb_layers, k)
    net = tflearn.densenet_block(net, nb_layers, k)
    net = tflearn.densenet_block(net, nb_layers, k)
    net = tflearn.global_avg_pool(net)

    # Regression
    net = tflearn.fully_connected(net, classes, activation='softmax')
    opt = tflearn.Nesterov(0.1, lr_decay=0.1, decay_step=32000, staircase=True)
    net = tflearn.regression(net, optimizer=opt,
                             loss='categorical_crossentropy')
    # Training
    model = tflearn.DNN(net, checkpoint_path='model_densenet_cifar10',
                        max_checkpoints=10, tensorboard_verbose=0, clip_gradients=0.)
    return model

 

 

---------------------------------
Training samples: 19094
Validation samples: 4774
--
 Training Step: 597  | total loss: 1.25178 | time: 572.236s
| Nesterov | epoch: 001 | loss: 1.25178 - acc: 0.6439 | val_loss: 1.21137 - val_acc: 0.6200 -- iter: 19094/19094
--
Terminating training at the end of epoch 1
 Training Step: 1194  | total loss: 0.79881 | time: 567.656s
| Nesterov | epoch: 002 | loss: 0.79881 - acc: 0.7648 | val_loss: 0.53844 - val_acc: 0.8349 -- iter: 19094/19094
--
Terminating training at the end of epoch 2
 Training Step: 1791  | total loss: 0.53881 | time: 570.329s
| Nesterov | epoch: 003 | loss: 0.53881 - acc: 0.8397 | val_loss: 0.52145 - val_acc: 0.8458 -- iter: 19094/19094
--
Terminating training at the end of epoch 3
 Training Step: 2388  | total loss: 0.40775 | time: 571.856s
| Nesterov | epoch: 004 | loss: 0.40775 - acc: 0.8794 | val_loss: 0.51006 - val_acc: 0.8486 -- iter: 19094/19094
--
Terminating training at the end of epoch 4
 Training Step: 2985  | total loss: 0.47510 | time: 574.415s
| Nesterov | epoch: 005 | loss: 0.47510 - acc: 0.8796 | val_loss: 0.38588 - val_acc: 0.8814 -- iter: 19094/19094
--
 Terminating training at the end of epoch 5
 Training Step: 3582  | total loss: 0.45802 | time: 577.388s
| Nesterov | epoch: 006 | loss: 0.45802 - acc: 0.8881 | val_loss: 1.30243 - val_acc: 0.6341 -- iter: 19094/19094
--
Terminating training at the end of epoch 6
 Training Step: 4179  | total loss: 0.26061 | time: 576.418s
| Nesterov | epoch: 007 | loss: 0.26061 - acc: 0.9182 | val_loss: 0.28861 - val_acc: 0.9166 -- iter: 19094/19094
--
Terminating training at the end of epoch 7
Successfully left training! Final model accuracy: 0.918215036392

 

resnext 模型:

def get_model(width, height, classes=40):
    # TODO, modify model
    # Real-time data preprocessing
    img_prep = tflearn.ImagePreprocessing()
    img_prep.add_featurewise_zero_center(per_channel=True)
    img_prep.add_featurewise_stdnorm()
    network = input_data(shape=[None, width, height, 1], data_preprocessing=img_prep)  # if RGB, 224,224,3

    n = 2
    net = tflearn.conv_2d(network, 16, 3, regularizer='L2', weight_decay=0.0001)
    net = tflearn.resnext_block(net, n, 16, 32)
    net = tflearn.resnext_block(net, 1, 32, 32, downsample=True)
    net = tflearn.resnext_block(net, n-1, 32, 32)
    net = tflearn.resnext_block(net, 1, 64, 32, downsample=True)
    net = tflearn.resnext_block(net, n-1, 64, 32)
    net = tflearn.batch_normalization(net)
    net = tflearn.activation(net, 'relu')
    net = tflearn.global_avg_pool(net)
    # Regression
    net = tflearn.fully_connected(net, classes, activation='softmax')
    opt = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=32000, staircase=True)
    net = tflearn.regression(net, optimizer=opt,
                             loss='categorical_crossentropy')
    # Training
    model = tflearn.DNN(net, checkpoint_path='model_resnext_cifar10',
                        max_checkpoints=10, tensorboard_verbose=0, clip_gradients=0.)
    return model

 

Training samples: 19094
Validation samples: 4774
--
Training Step: 597  | total loss: 1.28942 | time: 215.233ss
| Momentum | epoch: 001 | loss: 1.28942 - acc: 0.6302 | val_loss: 1.29879 - val_acc: 0.6148 -- iter: 19094/19094
--
Terminating training at the end of epoch 1
 Training Step: 1194  | total loss: 0.64329 | time: 213.968s
| Momentum | epoch: 002 | loss: 0.64329 - acc: 0.8121 | val_loss: 0.60106 - val_acc: 0.8270 -- iter: 19094/19094
--
Terminating training at the end of epoch 2
 Training Step: 1791  | total loss: 0.49910 | time: 214.042s
| Momentum | epoch: 003 | loss: 0.49910 - acc: 0.8448 | val_loss: 0.52757 - val_acc: 0.8458 -- iter: 19094/19094
--
Terminating training at the end of epoch 3
Training Step: 2388  | total loss: 0.51495 | time: 217.513ss
| Momentum | epoch: 004 | loss: 0.51495 - acc: 0.8590 | val_loss: 0.49154 - val_acc: 0.8582 -- iter: 19094/19094
--
Terminating training at the end of epoch 4
Training Step: 2985  | total loss: 0.43045 | time: 213.852ss
| Momentum | epoch: 005 | loss: 0.43045 - acc: 0.8896 | val_loss: 0.47342 - val_acc: 0.8607 -- iter: 19094/19094
--
Terminating training at the end of epoch 5
Training Step: 3582  | total loss: 0.24511 | time: 216.133ss
| Momentum | epoch: 006 | loss: 0.24511 - acc: 0.9249 | val_loss: 0.35686 - val_acc: 0.8957 -- iter: 19094/19094
--
 Terminating training at the end of epoch 6
 Training Step: 4179  | total loss: 0.46725 | time: 212.062s
| Momentum | epoch: 007 | loss: 0.46725 - acc: 0.8758 | val_loss: 0.46417 - val_acc: 0.8615 -- iter: 19094/19094
--
Terminating training at the end of epoch 7
 Training Step: 4776  | total loss: 0.43170 | time: 214.533s
| Momentum | epoch: 008 | loss: 0.43170 - acc: 0.8885 | val_loss: 0.46593 - val_acc: 0.8676 -- iter: 19094/19094
--
Terminating training at the end of epoch 8
 Training Step: 5373  | total loss: 0.19362 | time: 213.225s
| Momentum | epoch: 009 | loss: 0.19362 - acc: 0.9462 | val_loss: 0.28189 - val_acc: 0.9206 -- iter: 19094/19094
--
Terminating training at the end of epoch 9
Successfully left training! Final model accuracy: 0.946155309677

 

标签:acc,loss,network,val,--,汇总,模型试验,19094,tflearn
From: https://blog.51cto.com/u_11908275/6386002

相关文章

  • 方方格子excel汇总大师试用到期
    方方格子的excel汇总大师到期后,删除注册表分支即可:HKEY_CURRENT_USER\Software\VBandVBAProgramSettings\ExcelSummary\Regreg这个删除,再打开又是30天试用期。  摘自:https://zhidao.baidu.com/question/2273105751837667868.html......
  • Linux rm 删除指定文件外的其他文件 方法汇总
    转载自:https://www.cnblogs.com/ShaneZhang/p/3361361.html 一、Linux下删除文件和文件夹常用命令如下:删除文件:rmfile删除文件夹:rm-rfdir需要注意的是,rmdir只能够删除空文件夹。 二、删除制定文件(夹)之外的所有文件呢?1、方法1,比较麻烦的做法是:  复制需要保留......
  • tflearn alexnet iter 10
    他会自己下载数据: #-*-coding:utf-8-*-"""AlexNet.Applying'Alexnet'toOxford's17CategoryFlowerDatasetclassificationtask.References:-AlexKrizhevsky,IlyaSutskever&GeoffreyE.Hinton.ImageNetClassific......
  • tflearn Training Step每次 We will run it for 10 epochs (t
    TrainingTFLearnprovidesamodelwrapper'DNN'thatcanautomaticallyperformsaneuralnetworkclassifiertasks,suchastraining,prediction,save/restore,etc...Wewillrunitfor10epochs(thenetworkwillseealldata10times)withabat......
  • chatgpt 镜像站汇总
    无需登录直接可用的:https://chat.jinshutuan.com/ -免费由开发者提供https://itedus.cn -免费但需要关注公众号https://openai.run/ -非会员每日免费额度10,000Tokenshttps://chat.darkhorseone.cn/ -代码一号https://chat.aichatos.top/ -免费由开发者提供(可......
  • 中介效应分析全流程汇总
    一、中介效应说明中介效应主要研究自变量对因变量影响的过程中,自变量是否通过中介变量再对因变量产生影响,那什么情况表明中介效应存在呢?如果自变量对因变量影响过程中,中介变量在模型中有着桥梁般的作用,那说明中介效应存在。比如在电商数据中,经济发展水平通过影响居民收入从而影......
  • C语言考研简答题汇总
    简述C语言程序的开发步骤及各步的作用编辑,编辑源程序。一般会得到一个扩展名为.c的文件编译,生成二进制的目标代码,即机器代码,由众多个0和1组成的机器指令链接,链接程序,其结果是生成可执行文件运行,程序运行,其结果可能是达到了目的或者出错。简述动态存储变量和静态存储变量的特点静态......
  • js 以多字段为维度汇总某一字段值
    js以多字段为维度汇总某一字段值JavaScript可以以多个字段为维度进行汇总。你可以使用多个for循环或forEach循环,针对每个字段进行分组。然后使用reduce方法进行汇总。举个例子,假设你有一个数组数据如下:letdata=[{name:'Alice',age:25,city:'NewYork',......
  • Python连接es笔记二之查询方式汇总
    本文首发于公众号:Hunter后端原文链接:Python连接es笔记二之查询方式汇总上一节除了介绍使用Python连接es,还有最简单的query()方法,这一节介绍一下几种其他的查询方式。以下是本篇笔记目录:query()方法介绍Q()查询排序分页source()指定返回字段extra()操作count......
  • Linux常见命令汇总
    Linux常用命令1、Linux系统简介开源免费使用,技术支持:主要是字符模式,命令行界面操作,更加稳定。2、为啥学?负责搭建和维护,后端服务器搭建硬件服务器云服务器远程链接的工具Xshell3、xshell链接4、Linux目录结构层级式的树状目录结构"/"根目录"~"表示当前目录的加目录,超......