首页 > 其他分享 >2022 AMC 10B Problems

2022 AMC 10B Problems

时间:2023-05-30 12:12:15浏览次数:44  
标签:Euclid What square 10B HS AMC Problems Problem than

 

Problem 1

Define $x\diamond y$ to be $|x-y|$ for all real numbers $x$ and $y.$ What is the value of \[(1\diamond(2\diamond3))-((1\diamond2)\diamond3)?\]

$\textbf{(A)}\ {-}2 \qquad \textbf{(B)}\ {-}1 \qquad \textbf{(C)}\ 0 \qquad \textbf{(D)}\ 1 \qquad \textbf{(E)}\ 2$

 

Problem 2

In rhombus $ABCD$, point $P$ lies on segment $\overline{AD}$ so that $\overline{BP}$ $\perp$ $\overline{AD}$, $AP = 3$, and $PD = 2$. What is the area of $ABCD$? (Note: The figure is not drawn to scale.)

[asy] import olympiad; size(180); real r = 3, s = 5, t = sqrt(r*r+s*s); defaultpen(linewidth(0.6) + fontsize(10)); pair A = (0,0), B = (r,s), C = (r+t,s), D = (t,0), P = (r,0); draw(A--B--C--D--A^^B--P^^rightanglemark(B,P,D)); label("$A$",A,SW); label("$B$", B, NW); label("$C$",C,NE); label("$D$",D,SE); label("$P$",P,S); [/asy]

$\textbf{(A) }3\sqrt 5 \qquad \textbf{(B) }10 \qquad \textbf{(C) }6\sqrt 5 \qquad \textbf{(D) }20\qquad \textbf{(E) }25$

 

Problem 3

How many three-digit positive integers have an odd number of even digits?

$\textbf{(A) }150\qquad\textbf{(B) }250\qquad\textbf{(C) }350\qquad\textbf{(D) }450\qquad\textbf{(E) }550$

 

Problem 4

A donkey suffers an attack of hiccups and the first hiccup happens at $4:00$ one afternoon. Suppose that the donkey hiccups regularly every $5$ seconds. At what time does the donkey’s $700$th hiccup occur?

$\textbf{(A) }15 \text{ seconds after } 4:58$

$\textbf{(B) }20 \text{ seconds after } 4:58$

$\textbf{(C) }25 \text{ seconds after } 4:58$

$\textbf{(D) }30 \text{ seconds after } 4:58$

$\textbf{(E) }35 \text{ seconds after } 4:58$

 

Problem 5

What is the value of

\[\frac{\left(1+\frac13\right)\left(1+\frac15\right)\left(1+\frac17\right)}{\sqrt{\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{5^2}\right)\left(1-\frac{1}{7^2}\right)}}?\]

$\textbf{(A)}\ \sqrt3 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ \sqrt{15} \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ \sqrt{105}$

 

Problem 6

How many of the first ten numbers of the sequence $121, 11211, 1112111, \ldots$ are prime numbers?

$\textbf{(A) } 0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3 \qquad \textbf{(E) }4$

 

Problem 7

For how many values of the constant $k$ will the polynomial $x^{2}+kx+36$ have two distinct integer roots?

$\textbf{(A)}\ 6 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 14 \qquad\textbf{(E)}\ 16$

 

Problem 8

Consider the following $100$ sets of $10$ elements each: \begin{align*} &\{1,2,3,\ldots,10\}, \\ &\{11,12,13,\ldots,20\},\\ &\{21,22,23,\ldots,30\},\\ &\vdots\\ &\{991,992,993,\ldots,1000\}. \end{align*} How many of these sets contain exactly two multiples of $7$?

$\textbf{(A)}\ 40\qquad\textbf{(B)}\ 42\qquad\textbf{(C)}\ 43\qquad\textbf{(D)}\ 49\qquad\textbf{(E)}\ 50$

 

Problem 9

The sum \[\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots+\frac{2021}{2022!}\] can be expressed as $a-\frac{1}{b!}$, where $a$ and $b$ are positive integers. What is $a+b$?

$\textbf{(A)}\ 2020 \qquad\textbf{(B)}\ 2021 \qquad\textbf{(C)}\ 2022 \qquad\textbf{(D)}\ 2023 \qquad\textbf{(E)}\ 2024$

 

Problem 10

Camila writes down five positive integers. The unique mode of these integers is $2$ greater than their median, and the median is $2$ greater than their arithmetic mean. What is the least possible value for the mode?

$\textbf{(A)}\ 5 \qquad\textbf{(B)}\ 7 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 11 \qquad\textbf{(E)}\ 13$

 

Problem 11

All the high schools in a large school district are involved in a fundraiser selling T-shirts. Which of the choices below is logically equivalent to the statement "No school bigger than Euclid HS sold more T-shirts than Euclid HS"?

$\textbf{(A) }$ All schools smaller than Euclid HS sold fewer T-shirts than Euclid HS.

$\textbf{(B) }$ No school that sold more T-shirts than Euclid HS is bigger than Euclid HS.

$\textbf{(C) }$ All schools bigger than Euclid HS sold fewer T-shirts than Euclid HS.

$\textbf{(D) }$ All schools that sold fewer T-shirts than Euclid HS are smaller than Euclid HS.

$\textbf{(E) }$ All schools smaller than Euclid HS sold more T-shirts than Euclid HS.

 

Problem 12

A pair of fair $6$-sided dice is rolled $n$ times. What is the least value of $n$ such that the probability that the sum of the numbers face up on a roll equals $7$ at least once is greater than $\frac{1}{2}$?

$\textbf{(A) } 2 \qquad \textbf{(B) } 3 \qquad \textbf{(C) } 4 \qquad \textbf{(D) } 5 \qquad \textbf{(E) } 6$

 

Problem 13

The positive difference between a pair of primes is equal to $2$, and the positive difference between the cubes of the two primes is $31106$. What is the sum of the digits of the least prime that is greater than those two primes?

$\textbf{(A)}\ 8 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 11 \qquad\textbf{(D)}\ 13 \qquad\textbf{(E)}\ 16$

 

Problem 14

Suppose that $S$ is a subset of $\left\{ 1, 2, 3, \cdots , 25 \right\}$ such that the sum of any two (not necessarily distinct) elements of $S$ is never an element of $S.$ What is the maximum number of elements $S$ may contain?

$\textbf{(A)}\ 12 \qquad\textbf{(B)}\ 13 \qquad\textbf{(C)}\ 14 \qquad\textbf{(D)}\ 15 \qquad\textbf{(E)}\ 16$

 

Problem 15

Let $S_n$ be the sum of the first $n$ terms of an arithmetic sequence that has a common difference of $2$. The quotient $\frac{S_{3n}}{S_n}$ does not depend on $n$. What is $S_{20}$?

$\textbf{(A) } 340 \qquad \textbf{(B) } 360 \qquad \textbf{(C) } 380 \qquad \textbf{(D) } 400 \qquad \textbf{(E) } 420$

 

Problem 16

The diagram below shows a rectangle with side lengths $4$ and $8$ and a square with side length $5$. Three vertices of the square lie on three different sides of the rectangle, as shown. What is the area of the region inside both the square and the rectangle?

[asy] size(5cm); filldraw((4,0)--(8,3)--(8-3/4,4)--(1,4)--cycle,mediumgray); draw((0,0)--(8,0)--(8,4)--(0,4)--cycle,linewidth(1.1)); draw((1,0)--(1,4)--(4,0)--(8,3)--(5,7)--(1,4),linewidth(1.1)); label("$4$", (8,2), E); label("$8$", (4,0), S); label("$5$", (3,11/2), NW); draw((1,.35)--(1.35,.35)--(1.35,0),linewidth(1.1)); [/asy]

$\textbf{(A) }15\dfrac{1}{8}  \qquad \textbf{(B) }15\dfrac{3}{8}  \qquad \textbf{(C) }15\dfrac{1}{2}  \qquad \textbf{(D) }15\dfrac{5}{8}  \qquad \textbf{(E) }15\dfrac{7}{8}$

 

Problem 17

One of the following numbers is not divisible by any prime number less than $10.$ Which is it?

$\textbf{(A) } 2^{606}-1 \qquad\textbf{(B) } 2^{606}+1 \qquad\textbf{(C) } 2^{607}-1 \qquad\textbf{(D) } 2^{607}+1\qquad\textbf{(E) } 2^{607}+3^{607}$

 

Problem 18

Consider systems of three linear equations with unknowns $x$, $y$, and $z$,

\begin{align*} a_1 x + b_1 y + c_1 z & = 0 \\ a_2 x + b_2 y + c_2 z & = 0 \\ a_3 x + b_3 y + c_3 z & = 0 \end{align*}

where each of the coefficients is either $0$ or $1$ and the system has a solution other than $x=y=z=0$. For example, one such system is \[\{ 1x + 1y + 0z = 0, 0x + 1y + 1z = 0, 0x + 0y + 0z = 0 \}\] with a nonzero solution of $\{x,y,z\} = \{1, -1, 1\}$. How many such systems of equations are there? (The equations in a system need not be distinct, and two systems containing the same equations in a different order are considered different.)

$\textbf{(A)}\ 302 \qquad\textbf{(B)}\ 338 \qquad\textbf{(C)}\ 340 \qquad\textbf{(D)}\ 343 \qquad\textbf{(E)}\ 344$

 

Problem 19

Each square in a $5 \times 5$ grid is either filled or empty, and has up to eight adjacent neighboring squares, where neighboring squares share either a side or a corner. The grid is transformed by the following rules:

  • Any filled square with two or three filled neighbors remains filled.
  • Any empty square with exactly three filled neighbors becomes a filled square.
  • All other squares remain empty or become empty.

A sample transformation is shown in the figure below.

[asy]         import geometry;         unitsize(0.6cm);          void ds(pair x) {             filldraw(x -- (1,0) + x -- (1,1) + x -- (0,1)+x -- cycle,mediumgray,invisible);         }          ds((1,1));         ds((2,1));         ds((3,1));         ds((1,3));          for (int i = 0; i <= 5; ++i) {             draw((0,i)--(5,i));             draw((i,0)--(i,5));         }          label("Initial", (2.5,-1));         draw((6,2.5)--(8,2.5),Arrow);          ds((10,2));         ds((11,1));         ds((11,0));          for (int i = 0; i <= 5; ++i) {             draw((9,i)--(14,i));             draw((i+9,0)--(i+9,5));         }          label("Transformed", (11.5,-1)); [/asy]

Suppose the $5 \times 5$ grid has a border of empty squares surrounding a $3 \times 3$ subgrid. How many initial configurations will lead to a transformed grid consisting of a single filled square in the center after a single transformation? (Rotations and reflections of the same configuration are considered different.)

[asy]         import geometry;         unitsize(0.6cm);          void ds(pair x) {             filldraw(x -- (1,0) + x -- (1,1) + x -- (0,1)+x -- cycle,mediumgray,invisible);         }          for (int i = 1; i < 4; ++ i) {             for (int j = 1; j < 4; ++j) {                 label("?",(i + 0.5, j + 0.5));             }         }          for (int i = 0; i <= 5; ++i) {             draw((0,i)--(5,i));             draw((i,0)--(i,5));         }          label("Initial", (2.5,-1));         draw((6,2.5)--(8,2.5),Arrow);          ds((11,2));          for (int i = 0; i <= 5; ++i) {             draw((9,i)--(14,i));             draw((i+9,0)--(i+9,5));         }          label("Transformed", (11.5,-1)); [/asy]

$\textbf{(A)}\ 14 \qquad\textbf{(B)}\ 18 \qquad\textbf{(C)}\ 22 \qquad\textbf{(D)}\ 26 \qquad\textbf{(E)}\ 30$

 

Problem 20

Let $ABCD$ be a rhombus with $\angle{ADC} = 46^{\circ}$. Let $E$ be the midpoint of $\overline{CD}$, and let $F$ be the point on $\overline{BE}$ such that $\overline{AF}$ is perpendicular to $\overline{BE}$. What is the degree measure of $\angle{BFC}$?

$\textbf{(A)}\ 110 \qquad \textbf{(B)}\ 111 \qquad \textbf{(C)}\ 112 \qquad \textbf{(D)}\ 113 \qquad \textbf{(E)}\ 114$

 

Problem 21

Let $P(x)$ be a polynomial with rational coefficients such that when $P(x)$ is divided by the polynomial $x^2 + x + 1$, the remainder is $x + 2$, and when $P(x)$ is divided by the polynomial $x^2 + 1$, the remainder is $2x + 1$. There is a unique polynomial of least degree with these two properties. What is the sum of the squares of the coefficients of that polynomial?

$\textbf{(A) } 10 \qquad \textbf{(B) } 13 \qquad \textbf{(C) } 19 \qquad \textbf{(D) } 20 \qquad \textbf{(E) } 23$

 

Problem 22

Let $S$ be the set of circles in the coordinate plane that are tangent to each of the three circles with equations $x^{2}+y^{2}=4$, $x^{2}+y^{2}=64$, and $(x-5)^{2}+y^{2}=3$. What is the sum of the areas of all circles in $S$?

$\textbf{(A)}~48\pi\qquad\textbf{(B)}~68\pi\qquad\textbf{(C)}~96\pi\qquad\textbf{(D)}~102\pi\qquad\textbf{(E)}~136\pi\qquad$

 

Problem 23

Ant Amelia starts on the number line at $0$ and crawls in the following manner. For $n=1,2,3,$ Amelia chooses a time duration $t_n$ and an increment $x_n$ independently and uniformly at random from the interval $(0,1).$ During the $n$th step of the process, Amelia moves $x_n$ units in the positive direction, using up $t_n$ minutes. If the total elapsed time has exceeded $1$ minute during the $n$th step, she stops at the end of that step; otherwise, she continues with the next step, taking at most $3$ steps in all. What is the probability that Amelia’s position when she stops will be greater than $1$?

$\textbf{(A) }\frac{1}{3} \qquad \textbf{(B) }\frac{1}{2} \qquad \textbf{(C) }\frac{2}{3} \qquad \textbf{(D) }\frac{3}{4} \qquad \textbf{(E) }\frac{5}{6}$

 

Problem 24

Consider functions $f$ that satisfy \[|f(x)-f(y)|\leq \frac{1}{2}|x-y|\] for all real numbers $x$ and $y$. Of all such functions that also satisfy the equation $f(300) = f(900)$, what is the greatest possible value of \[f(f(800))-f(f(400))?\] $\textbf{(A)}\ 25 \qquad\textbf{(B)}\ 50 \qquad\textbf{(C)}\ 100 \qquad\textbf{(D)}\ 150 \qquad\textbf{(E)}\ 200$

 

Problem 25

Let $x_0,x_1,x_2,\dotsc$ be a sequence of numbers, where each $x_k$ is either $0$ or $1$. For each positive integer $n$, define \[S_n = \sum_{k=0}^{n-1} x_k 2^k\] Suppose $7S_n \equiv 1 \pmod{2^n}$ for all $n \geqslant 1$. What is the value of the sum \[x_{2019} + 2x_{2020} + 4x_{2021} + 8x_{2022}?\] $\textbf{(A) } 6 \qquad \textbf{(B) } 7 \qquad \textbf{(C) }12\qquad \textbf{(D) } 14\qquad \textbf{(E) }15$

 

 

2022 AMC 10B Answer Key

 

标签:Euclid,What,square,10B,HS,AMC,Problems,Problem,than
From: https://www.cnblogs.com/chen-ao666/p/17442873.html

相关文章

  • [AGC010B]Boxes
    AGC010BBoxes先将题目转换成正着的,即由全\(0\)变为给定的序列。操作次数为\(k=\dfrac{\suma_i}{n(n+1)\div2}\)。条件\(k\)必定是整数很显然。这道题的重点在于这个增加的数列是一个等差数列,考虑到这样差分数组十分方便,对\(a\)原地差分,设以\(i\)为起点做一次操作,进......
  • 2022 AMC 10A Problems
    2022AMC10AProblemsProblem1Whatisthevalueof                                             Problem2Mikecycledlapsinminutes.Assumehecycledataconst......
  • 力扣 662 https://leetcode.cn/problems/maximum-width-of-binary-tree/
    需要了解树的顺序存储如果是普通的二叉树,底层是用链表去连接的如果是满二叉树,底层用的是数组去放的,而数组放的时候会有索引对应当前父节点是索引i,下一个左右节点就是2i,2i+1利用满二叉树的索引特征所以需要对每个节点进行一个索引赋值,赋值在队列中,队列用数组表示核心代码......
  • 每日一题 力扣 1377 https://leetcode.cn/problems/frog-position-after-t-seconds/
    力扣1377https://leetcode.cn/problems/frog-position-after-t-seconds/这道题目用dp去做,构建邻接矩阵,做的时候需要注意题目条件,如果青蛙跳不动了,这个概率就保持不变了一般跳青蛙,很容易想到dp核心代码如下publicdoublefrogPosition(ipublicdoublefrogPosition(intn,......
  • ICS TRIPLEX工业通讯模块T8110B
    W;① ⑧ 0 ③  0 ① ⑦  7  7 ⑤  9ICSTRIPLEX工业通讯模块T8110B,T8403,T8431,T8403,T8461,T8461C,T8110B,T8403。T8403C,T9432,T9110,T9451,ICSTRIPLEX工业通讯模块T8110B,T8403,T8431,T8403,T8461是电喷发动机控制系统中最重要的传感器之一。发动机转速传感器的作......
  • June 2021-Continuous Transition: Improving Sample Efficiency for Continuous Cont
    摘要:尽管深度强化学习(RL)已成功应用于各种机器人控制任务,但由于样本效率较差,将其应用于现实世界任务仍然具有挑战性。为了克服这一缺点,一些工作侧重于在训练过程中重用收集的轨迹数据,将其分解为一组策略无关的离散变迁。然而,它们的改进有些边际,因为i)转换的数量通常很小,ii)值分......
  • 如何分发Teamcenter的jar文件?
    1.将jar包拷贝到TC的Portal文件夹下的plugins文件夹中,例如:D:\Siemens\Teamcenter14\portal\plugins 2.删除用户文件中的Teamcenter临时文件,例如:C:\Users\zyq\Teamcenter 3.运行TC注册bat文件:D:\Siemens\Teamcenter14\portal\registry\genregxml.bat  ......
  • WTYKAMC@2023
    将软件包放置于如下路径:C:\ProgramFiles\NationalInstruments\LabVIEW2016\user.lib 使用方法:新建一个vi——>右键浏览到并点击WTYK_AMC_Framwork.v 将会实现框架代码块的快速放置;......
  • 4.[1201D - Treasure Hunting](https://codeforces.com/problemset/problem/1201/D)
    4.1201D-TreasureHunting题目意思:在一个n*m的地图上面,左下角的坐标是(1,1),最开始你位于左下角,一秒钟你可以进行往左或者往右的操作,你只能在一些特殊的列上面进行往上移动的操作,你不可以往下移动。现在告诉你k个宝藏的坐标信息以及哪些列是允许往上的,问最后至少要几秒可以遍历k......
  • Teamcenter用本地胖客户端启动时,可以看到定制包的插件菜单项,但是用DEBUG启动时,看不到
    1、用本地胖客户端启动时,可以看到定制包的插件菜单项,但是用DEBUG启动时,看不到?原因:是因为DEBUG模式下,是采用JAVA1.8来运行的。但是本机的胖客户端是采用JAVA11来运行的解决办法:换成JAVA11就可以了 ......