首页 > 其他分享 >2022 AMC 10A Problems

2022 AMC 10A Problems

时间:2023-05-29 11:15:11浏览次数:59  
标签:digits What positive AMC 10A Problems least each Problem

2022 AMC 10A Problems

Problem 1

What is the value of

                                                                                      \[3+\frac{1}{3+\frac{1}{3+\frac13}}?\]

$\textbf{(A)}\ \frac{31}{10}\qquad\textbf{(B)}\ \frac{49}{15}\qquad\textbf{(C)}\ \frac{33}{10}\qquad\textbf{(D)}\ \frac{109}{33}\qquad\textbf{(E)}\ \frac{15}{4}$

 

Problem 2

Mike cycled $15$ laps in $57$ minutes. Assume he cycled at a constant speed throughout. Approximately how many laps did he complete in the first $27$ minutes?

$\textbf{(A) } 5 \qquad\textbf{(B) } 7 \qquad\textbf{(C) } 9 \qquad\textbf{(D) } 11 \qquad\textbf{(E) } 13$

 

Problem 3

The sum of three numbers is $96.$ The first number is $6$ times the third number, and the third number is $40$ less than the second number. What is the absolute value of the difference between the first and second numbers?

$\textbf{(A) } 1 \qquad \textbf{(B) } 2 \qquad \textbf{(C) } 3 \qquad \textbf{(D) } 4 \qquad \textbf{(E) } 5$

 

Problem 4

In some countries, automobile fuel efficiency is measured in liters per $100$ kilometers while other countries use miles per gallon. Suppose that 1 kilometer equals $m$ miles, and $1$ gallon equals $l$ liters. Which of the following gives the fuel efficiency in liters per $100$ kilometers for a car that gets $x$ miles per gallon?

$\textbf{(A) } \frac{x}{100lm} \qquad \textbf{(B) } \frac{xlm}{100} \qquad \textbf{(C) } \frac{lm}{100x} \qquad \textbf{(D) } \frac{100}{xlm} \qquad \textbf{(E) } \frac{100lm}{x}$

 

Problem 5

Square $ABCD$ has side length $1$. Points $P$, $Q$, $R$, and $S$ each lie on a side of $ABCD$ such that $APQCRS$ is an equilateral convex hexagon with side length $s$. What is $s$?

$\textbf{(A) } \frac{\sqrt{2}}{3} \qquad \textbf{(B) } \frac{1}{2} \qquad \textbf{(C) } 2 - \sqrt{2} \qquad \textbf{(D) } 1 - \frac{\sqrt{2}}{4} \qquad \textbf{(E) } \frac{2}{3}$

 

Problem 6

Which expression is equal to

                                                                                                              \[\left|a-2-\sqrt{(a-1)^2}\right|\]

for $a<0?$

$\textbf{(A) } 3-2a \qquad \textbf{(B) } 1-a \qquad \textbf{(C) } 1 \qquad \textbf{(D) } a+1 \qquad \textbf{(E) } 3$

 

Problem 7

The least common multiple of a positive integer $n$ and $18$ is $180$, and the greatest common divisor of $n$ and $45$ is $15$. What is the sum of the digits of $n$?

$\textbf{(A) } 3 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 12$

 

Problem 8

A data set consists of $6$ (not distinct) positive integers: $1$, $7$, $5$, $2$, $5$, and $X$. The average (arithmetic mean) of the $6$ numbers equals a value in the data set. What is the sum of all positive values of $X$?

$\textbf{(A) } 10 \qquad \textbf{(B) } 26 \qquad \textbf{(C) } 32 \qquad \textbf{(D) } 36 \qquad \textbf{(E) } 40$

 

Problem 9

A rectangle is partitioned into $5$ regions as shown. Each region is to be painted a solid color - red, orange, yellow, blue, or green - so that regions that touch are painted different colors, and colors can be used more than once. How many different colorings are possible?

[asy] size(5.5cm); draw((0,0)--(0,2)--(2,2)--(2,0)--cycle); draw((2,0)--(8,0)--(8,2)--(2,2)--cycle); draw((8,0)--(12,0)--(12,2)--(8,2)--cycle); draw((0,2)--(6,2)--(6,4)--(0,4)--cycle); draw((6,2)--(12,2)--(12,4)--(6,4)--cycle); [/asy]

$\textbf{(A) }120\qquad\textbf{(B) }270\qquad\textbf{(C) }360\qquad\textbf{(D) }540\qquad\textbf{(E) }720$

 

Problem 10

Daniel finds a rectangular index card and measures its diagonal to be $8$ centimeters. Daniel then cuts out equal squares of side $1$ cm at two opposite corners of the index card and measures the distance between the two closest vertices of these squares to be $4\sqrt{2}$ centimeters, as shown below. What is the area of the original index card?

                                                                                                                [asy] // Diagram by MRENTHUSIASM, edited by Djmathman size(200); defaultpen(linewidth(0.6)); draw((489.5,-213) -- (225.5,-213) -- (225.5,-185) -- (199.5,-185) -- (198.5,-62) -- (457.5,-62) -- (457.5,-93) -- (489.5,-93) -- cycle); draw((206.29,-70.89) -- (480.21,-207.11), linetype ("6 6"),Arrows(size=4,arrowhead=HookHead)); draw((237.85,-182.24) -- (448.65,-95.76),linetype ("6 6"),Arrows(size=4,arrowhead=HookHead)); label("$1$",(450,-80)); label("$1$",(475,-106)); label("$8$",(300,-103)); label("$4\sqrt 2$",(300,-173)); [/asy]

$\textbf{(A) } 14 \qquad \textbf{(B) } 10\sqrt{2} \qquad \textbf{(C) } 16 \qquad \textbf{(D) } 12\sqrt{2} \qquad \textbf{(E) } 18$

 

Problem 11

Ted mistakenly wrote $2^m\cdot\sqrt{\frac{1}{4096}}$ as $2\cdot\sqrt[m]{\frac{1}{4096}}.$ What is the sum of all real numbers $m$ for which these two expressions have the same value?

$\textbf{(A) } 5 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 7 \qquad \textbf{(D) } 8 \qquad \textbf{(E) } 9$

 

Problem 12

On Halloween $31$ children walked into the principal's office asking for candy. They can be classified into three types: Some always lie; some always tell the truth; and some alternately lie and tell the truth. The alternaters arbitrarily choose their first response, either a lie or the truth, but each subsequent statement has the opposite truth value from its predecessor. The principal asked everyone the same three questions in this order.

"Are you a truth-teller?" The principal gave a piece of candy to each of the $22$ children who answered yes.

"Are you an alternater?" The principal gave a piece of candy to each of the $15$ children who answered yes.

"Are you a liar?" The principal gave a piece of candy to each of the $9$ children who answered yes.

How many pieces of candy in all did the principal give to the children who always tell the truth?

$\textbf{(A) } 7 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 21 \qquad \textbf{(D) } 27 \qquad \textbf{(E) } 31$

 

Problem 13

Let $\triangle ABC$ be a scalene triangle. Point $P$ lies on $\overline{BC}$ so that $\overline{AP}$ bisects $\angle BAC.$ The line through $B$ perpendicular to $\overline{AP}$ intersects the line through $A$ parallel to $\overline{BC}$ at point $D.$ Suppose $BP=2$ and $PC=3.$ What is $AD?$

$\textbf{(A) } 8 \qquad \textbf{(B) } 9 \qquad \textbf{(C) } 10 \qquad \textbf{(D) } 11 \qquad \textbf{(E) } 12$

 

Problem 14

How many ways are there to split the integers $1$ through $14$ into $7$ pairs such that in each pair, the greater number is at least $2$ times the lesser number?

$\textbf{(A) } 108 \qquad \textbf{(B) } 120 \qquad \textbf{(C) } 126 \qquad \textbf{(D) } 132 \qquad \textbf{(E) } 144$

 

Problem 15

Quadrilateral $ABCD$ with side lengths $AB=7, BC=24, CD=20, DA=15$ is inscribed in a circle. The area interior to the circle but exterior to the quadrilateral can be written in the form $\frac{a\pi-b}{c},$ where $a,b,$ and $c$ are positive integers such that $a$ and $c$ have no common prime factor. What is $a+b+c?$

$\textbf{(A) } 260 \qquad \textbf{(B) } 855 \qquad \textbf{(C) } 1235 \qquad \textbf{(D) } 1565 \qquad \textbf{(E) } 1997$

 

Problem 16

The roots of the polynomial $10x^3 - 39x^2 + 29x - 6$ are the height, length, and width of a rectangular box (right rectangular prism). A new rectangular box is formed by lengthening each edge of the original box by $2$ units. What is the volume of the new box?

$\textbf{(A) } \frac{24}{5} \qquad \textbf{(B) } \frac{42}{5} \qquad \textbf{(C) } \frac{81}{5} \qquad \textbf{(D) } 30 \qquad \textbf{(E) } 48$

 

Problem 17

How many three-digit positive integers $\underline{a} \ \underline{b} \ \underline{c}$ are there whose nonzero digits $a,b,$ and $c$ satisfy

                                                                                                                       \[0.\overline{\underline{a}~\underline{b}~\underline{c}} = \frac{1}{3} (0.\overline{a} + 0.\overline{b} + 0.\overline{c})?\]

(The bar indicates repetition, thus $0.\overline{\underline{a}~\underline{b}~\underline{c}}$ is the infinite repeating decimal $0.\underline{a}~\underline{b}~\underline{c}~\underline{a}~\underline{b}~\underline{c}~\cdots$)

$\textbf{(A) } 9 \qquad \textbf{(B) } 10 \qquad \textbf{(C) } 11 \qquad \textbf{(D) } 13 \qquad \textbf{(E) } 14$

 

Problem 18

Let $T_k$ be the transformation of the coordinate plane that first rotates the plane $k$ degrees counterclockwise around the origin and then reflects the plane across the $y$-axis. What is the least positive integer $n$ such that performing the sequence of transformations $T_1, T_2, T_3,...,T_n$ returns the point $(1, 0)$ back to itself?

$\textbf{(A) } 359 \qquad \textbf{(B) } 360 \qquad \textbf{(C) } 719 \qquad \textbf{(D) } 720 \qquad \textbf{(E) } 721$

 

Problem 19

Define $L_n$ as the least common multiple of all the integers from $1$ to $n$ inclusive. There is a unique integer $h$ such that

                                                                                                                 \[\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{17}=\frac{h}{L_{17}}\]

What is the remainder when $h$ is divided by $17$?

$\textbf{(A) } 1 \qquad \textbf{(B) } 3 \qquad \textbf{(C) } 5 \qquad \textbf{(D) } 7 \qquad \textbf{(E) } 9$

 

Problem 20

A four-term sequence is formed by adding each term of a four-term arithmetic sequence of positive integers to the corresponding term of a four-term geometric sequence of positive integers. The first three terms of the resulting four-term sequence are $57$, $60$, and $91$. What is the fourth term of this sequence?

$\textbf{(A) } 190 \qquad \textbf{(B) } 194 \qquad \textbf{(C) } 198 \qquad \textbf{(D) } 202 \qquad \textbf{(E) } 206$

 

Problem 21

A bowl is formed by attaching four regular hexagons of side $1$ to a square of side $1$. The edges of the adjacent hexagons coincide, as shown in the figure. What is the area of the octagon obtained by joining the top eight vertices of the four hexagons, situated on the rim of the bowl?

[asy] import three; size(225); currentprojection=   orthographic(camera=(-5.52541796301147,-2.61548797564715,1.6545450372312),                up=(0.00247902062334861,0.000877141782387748,0.00966536329192992),                target=(0,0,0),                zoom=0.570588560870951); currentpen = black+1.5bp; triple A = O; triple M = (X+Y)/2; triple B = (-1/2,-1/2,1/sqrt(2)); triple C = (-1,0,sqrt(2)); triple D = (0,-1,sqrt(2)); transform3 rho = rotate(90,M,M+Z);  //arrays of vertices for the lower level (the square), the middle level, //and the interleaves vertices of the upper level (the octagon) triple[] lVs = {A}; triple[] mVs = {B}; triple[] uVsl = {C}; triple[] uVsr = {D};  for(int i = 0; i < 3; ++i){   lVs.push(rho*lVs[i]);   mVs.push(rho*mVs[i]);   uVsl.push(rho*uVsl[i]);   uVsr.push(rho*uVsr[i]); }  lVs.cyclic = true; uVsl.cyclic = true;  for(int i : new int[] {0,1,2,3}){   draw(uVsl[i]--uVsr[i]);   draw(uVsr[i]--uVsl[i+1]); } draw(lVs[0]--lVs[1]^^lVs[0]--lVs[3]); for(int i : new int[] {0,1,3}){   draw(lVs[0]--lVs[i]);   draw(lVs[i]--mVs[i]);   draw(mVs[i]--uVsl[i]); } for(int i : new int[] {0,3}){   draw(mVs[i]--uVsr[i]); }  for(int i : new int[] {1,3}) draw(lVs[2]--lVs[i],dashed); draw(lVs[2]--mVs[2],dashed); draw(mVs[2]--uVsl[2]^^mVs[2]--uVsr[2],dashed); draw(mVs[1]--uVsr[1],dashed);  //Comment two lines below to remove red edges //draw(lVs[1]--lVs[3],red+2bp); //draw(uVsl[0]--uVsr[0],red+2bp); [/asy]

$\textbf{(A) } 6 \qquad \textbf{(B) } 7 \qquad \textbf{(C) } 5+2\sqrt{2} \qquad \textbf{(D) } 8 \qquad \textbf{(E) } 9$

 

Problem 22

Suppose that $13$ cards numbered $1, 2, 3, \ldots, 13$ are arranged in a row. The task is to pick them up in numerically increasing order, working repeatedly from left to right. In the example below, cards $1, 2, 3$ are picked up on the first pass, $4$ and $5$ on the second pass, $6$ on the third pass, $7, 8, 9, 10$ on the fourth pass, and $11, 12, 13$ on the fifth pass. For how many of the $13!$ possible orderings of the cards will the $13$ cards be picked up in exactly two passes?

[asy] size(11cm); draw((0,0)--(2,0)--(2,3)--(0,3)--cycle); label("7", (1,1.5)); draw((3,0)--(5,0)--(5,3)--(3,3)--cycle); label("11", (4,1.5)); draw((6,0)--(8,0)--(8,3)--(6,3)--cycle); label("8", (7,1.5)); draw((9,0)--(11,0)--(11,3)--(9,3)--cycle); label("6", (10,1.5)); draw((12,0)--(14,0)--(14,3)--(12,3)--cycle); label("4", (13,1.5)); draw((15,0)--(17,0)--(17,3)--(15,3)--cycle); label("5", (16,1.5)); draw((18,0)--(20,0)--(20,3)--(18,3)--cycle); label("9", (19,1.5)); draw((21,0)--(23,0)--(23,3)--(21,3)--cycle); label("12", (22,1.5)); draw((24,0)--(26,0)--(26,3)--(24,3)--cycle); label("1", (25,1.5)); draw((27,0)--(29,0)--(29,3)--(27,3)--cycle); label("13", (28,1.5)); draw((30,0)--(32,0)--(32,3)--(30,3)--cycle); label("10", (31,1.5)); draw((33,0)--(35,0)--(35,3)--(33,3)--cycle); label("2", (34,1.5)); draw((36,0)--(38,0)--(38,3)--(36,3)--cycle); label("3", (37,1.5)); [/asy]

$\textbf{(A) } 4082 \qquad \textbf{(B) } 4095 \qquad \textbf{(C) } 4096 \qquad \textbf{(D) } 8178 \qquad \textbf{(E) } 8191$

 

Problem 23

Isosceles trapezoid $ABCD$ has parallel sides $\overline{AD}$ and $\overline{BC},$ with $BC < AD$ and $AB = CD.$ There is a point $P$ in the plane such that $PA=1, PB=2, PC=3,$ and $PD=4.$ What is $\tfrac{BC}{AD}?$

$\textbf{(A) }\frac{1}{4}\qquad\textbf{(B) }\frac{1}{3}\qquad\textbf{(C) }\frac{1}{2}\qquad\textbf{(D) }\frac{2}{3}\qquad\textbf{(E) }\frac{3}{4}$

 

Problem 24

How many strings of length $5$ formed from the digits $0$, $1$, $2$, $3$, $4$ are there such that for each $j \in \{1,2,3,4\}$, at least $j$ of the digits are less than $j$? (For example, $02214$ satisfies this condition because it contains at least $1$ digit less than $1$, at least $2$ digits less than $2$, at least $3$ digits less than $3$, and at least $4$ digits less than $4$. The string $23404$ does not satisfy the condition because it does not contain at least $2$ digits less than $2$.)

$\textbf{(A) }500\qquad\textbf{(B) }625\qquad\textbf{(C) }1089\qquad\textbf{(D) }1199\qquad\textbf{(E) }1296$

 

Problem 25

Let $R$, $S$, and $T$ be squares that have vertices at lattice points (i.e., points whose coordinates are both integers) in the coordinate plane, together with their interiors. The bottom edge of each square is on the $x$-axis. The left edge of $R$ and the right edge of $S$ are on the $y$-axis, and $R$ contains $\frac{9}{4}$ as many lattice points as does $S$. The top two vertices of $T$ are in $R \cup S$, and $T$ contains $\frac{1}{4}$ of the lattice points contained in $R \cup S.$ See the figure (not drawn to scale).

 [asy] size(8cm); label(scale(.8)*"$y$", (0,60), N); label(scale(.8)*"$x$", (60,0), E); filldraw((0,0)--(55,0)--(55,55)--(0,55)--cycle, yellow+orange+white+white); label(scale(1.3)*"$R$", (55/2,55/2)); filldraw((0,0)--(0,28)--(-28,28)--(-28,0)--cycle, green+white+white); label(scale(1.3)*"$S$",(-14,14)); filldraw((-10,0)--(15,0)--(15,25)--(-10,25)--cycle, red+white+white); label(scale(1.3)*"$T$",(3.5,25/2)); draw((0,-10)--(0,60),EndArrow()); draw((-34,0)--(60,0),EndArrow()); [/asy]

The fraction of lattice points in $S$ that are in $S \cap T$ is $27$ times the fraction of lattice points in $R$ that are in $R \cap T$. What is the minimum possible value of the edge length of $R$ plus the edge length of $S$ plus the edge length of $T$?

$\textbf{(A) }336\qquad\textbf{(B) }337\qquad\textbf{(C) }338\qquad\textbf{(D) }339\qquad\textbf{(E) }340$

 

 

2022 AMC 10A Answer Key

标签:digits,What,positive,AMC,10A,Problems,least,each,Problem
From: https://www.cnblogs.com/chen-ao666/p/17439664.html

相关文章

  • 力扣 662 https://leetcode.cn/problems/maximum-width-of-binary-tree/
    需要了解树的顺序存储如果是普通的二叉树,底层是用链表去连接的如果是满二叉树,底层用的是数组去放的,而数组放的时候会有索引对应当前父节点是索引i,下一个左右节点就是2i,2i+1利用满二叉树的索引特征所以需要对每个节点进行一个索引赋值,赋值在队列中,队列用数组表示核心代码......
  • 每日一题 力扣 1377 https://leetcode.cn/problems/frog-position-after-t-seconds/
    力扣1377https://leetcode.cn/problems/frog-position-after-t-seconds/这道题目用dp去做,构建邻接矩阵,做的时候需要注意题目条件,如果青蛙跳不动了,这个概率就保持不变了一般跳青蛙,很容易想到dp核心代码如下publicdoublefrogPosition(ipublicdoublefrogPosition(intn,......
  • June 2021-Continuous Transition: Improving Sample Efficiency for Continuous Cont
    摘要:尽管深度强化学习(RL)已成功应用于各种机器人控制任务,但由于样本效率较差,将其应用于现实世界任务仍然具有挑战性。为了克服这一缺点,一些工作侧重于在训练过程中重用收集的轨迹数据,将其分解为一组策略无关的离散变迁。然而,它们的改进有些边际,因为i)转换的数量通常很小,ii)值分......
  • 量产充电机项目资料 900W 或 1Kw 20V-90V 10A 双管正激 可调电源 充电机
    量产充电机项目资料900W或1Kw20V-90V10A双管正激可调电源充电机提供PCB和程序,BOM,磁性器件,散热片规格书等源文件.输入参数:AC90-265,PF大于0.95@500W功率:AC110V500Wmax;AC220V900W-1000Wmax输出:20V-90V10Amax保护:短路保护,欠压保护,电池反接保护,过流保护,过温度保护通讯:RS......
  • 如何分发Teamcenter的jar文件?
    1.将jar包拷贝到TC的Portal文件夹下的plugins文件夹中,例如:D:\Siemens\Teamcenter14\portal\plugins 2.删除用户文件中的Teamcenter临时文件,例如:C:\Users\zyq\Teamcenter 3.运行TC注册bat文件:D:\Siemens\Teamcenter14\portal\registry\genregxml.bat  ......
  • WTYKAMC@2023
    将软件包放置于如下路径:C:\ProgramFiles\NationalInstruments\LabVIEW2016\user.lib 使用方法:新建一个vi——>右键浏览到并点击WTYK_AMC_Framwork.v 将会实现框架代码块的快速放置;......
  • 4.[1201D - Treasure Hunting](https://codeforces.com/problemset/problem/1201/D)
    4.1201D-TreasureHunting题目意思:在一个n*m的地图上面,左下角的坐标是(1,1),最开始你位于左下角,一秒钟你可以进行往左或者往右的操作,你只能在一些特殊的列上面进行往上移动的操作,你不可以往下移动。现在告诉你k个宝藏的坐标信息以及哪些列是允许往上的,问最后至少要几秒可以遍历k......
  • Teamcenter用本地胖客户端启动时,可以看到定制包的插件菜单项,但是用DEBUG启动时,看不到
    1、用本地胖客户端启动时,可以看到定制包的插件菜单项,但是用DEBUG启动时,看不到?原因:是因为DEBUG模式下,是采用JAVA1.8来运行的。但是本机的胖客户端是采用JAVA11来运行的解决办法:换成JAVA11就可以了 ......
  • AtCoder Regular Contest 111 F Do you like query problems?
    洛谷传送门AtCoder传送门挺有意思的计数。计数感觉很难做,不妨转成期望,期望又可以转成概率之和。考虑枚举\(w\in[0,m-1]\),把\(>w\)的数设为\(1\),\(\lew\)的数设为\(0\)。那么期望就是所有\(w\),\(a_i\)为\(1\)的概率之和。对于一个\(i\),只有以下的操作能改变\(......
  • 删除Teamcenter bmide模板
    1.检验是否可以删除bmide_remove_template-u=infodba-p=infodba-g=dba-mode=dryrun-template=v7box BMIDE移除模板日期:周日4月23202308:37:46上午中国标准时间----------------------------------------------------------------------------验证输入参数...Fin......