data.py里的各个文件的生成
Load forcing data
ERA5_LAND_label_4_1990???哪生成的
ERA5-Land_forcing {sr} spatial resolution {year}.npy??哪来的
lat_{s}.npy #109
lon_{s}.npy#110
filter Glacial region
Mask with {sr} spatial resolution.npy#204
Determine whether to perform memmap mapping
# Memmap is to deal with the problem of excessive amount of data
forcing_memmap.npy???#120通过flush
Load land_surface data
ERA5-Land_land_surface {sr} spatial resolution {year}.npy??哪来的
land_surface_memmap.npy?哪生成的!#172通过flush
Load label data
# filter Glacial region
Mask with {sr} spatial resolution.npy#204
Load static_norm data
static_norm.npy#224
Partition and create datasets
Create a training dataset;
The default training data is 1990 to 2019.
x_train.npy???哪生成?通过memmap里的flush
y_train.npy#265
x_test.npy#275 通过flush
normalize
# Adopt maximum and minimum normalization
# There are two forms of normalization: region and gloabl
scaler_x.npy#303,flush
scaler_y.npy#304,flush
Save the normalized dataset
x_train_norm_shape.npy#383
x_test_norm_shape.npy#384
x_test_norm.npy#396
x_train_norm.npy#385,memmap
y_test_norm.npy#401
y_train_norm.npy#402
标签:py,生成,train,npy,flush,memmap,data,norm From: https://www.cnblogs.com/xinxuann/p/17434181.html