链表理论基础
链表是一种通过指针串联在一起的线性结构,每一个节点由两部分组成,一个是数据域一个是指针域(存放指向下一个节点的指针),最后一个节点的指针域指向null(空指针的意思)。
单链表
双链表
双链表:每一个节点有两个指针域,一个指向下一个节点,一个指向上一个节点。
循环链表
循环链表,顾名思义,就是链表首尾相连。
链表的存储方式
链表是通过指针域的指针链接在内存中各个节点。
所以链表中的节点在内存中不是连续分布的 ,而是散乱分布在内存中的某地址上,分配机制取决于操作系统的内存管理。
这个链表起始节点为2, 终止节点为7, 各个节点分布在内存的不同地址空间上,通过指针串联在一起。
链表的定义
public class ListNode {
// 结点的值
int val;
// 下一个结点
ListNode next;
// 节点的构造函数(无参)
public ListNode() {
}
// 节点的构造函数(有一个参数)
public ListNode(int val) {
this.val = val;
}
// 节点的构造函数(有两个参数)
public ListNode(int val, ListNode next) {
this.val = val;
this.next = next;
}
}
链表的操作
删除节点
删除D节点:
只要将C节点的next指针 指向E节点就可以了。
D节点此时依然留在内存里,c++需要手动释放内存,python,java等有内存回收机制会自动释放。
添加节点
性能分析
移除链表元素
题目
题意:删除链表中等于给定值 val 的所有节点。
题目链接
示例 1:
输入:head = [1,2,6,3,4,5,6], val = 6
输出:[1,2,3,4,5]
示例 2:
输入:head = [], val = 1
输出:[]
示例 3:
输入:head = [7,7,7,7], val = 7
输出:[]
使用原链表删除
需要注意检测头节点时使用while而不是if,因为在head更新后,新的头节点也可能需要删除。
/**
* 不添加虚拟节点方式
* 时间复杂度 O(n)
* 空间复杂度 O(1)
* @param head
* @param val
* @return
*/
public ListNode removeElements(ListNode head, int val) {
while (head != null && head.val == val) {
head = head.next;
}
// 已经为null,提前退出
if (head == null) {
return head;
}
// 已确定当前head.val != val
ListNode pre = head;
ListNode cur = head.next;
while (cur != null) {
if (cur.val == val) {
pre.next = cur.next;
} else {
pre = cur;
}
cur = cur.next;
}
return head;
}
/**
* 不添加虚拟节点and pre Node方式
* 时间复杂度 O(n)
* 空间复杂度 O(1)
* @param head
* @param val
* @return
*/
public ListNode removeElements(ListNode head, int val) {
while(head!=null && head.val==val){
head = head.next;
}
ListNode curr = head;
while(curr!=null){
while(curr.next!=null && curr.next.val == val){
curr.next = curr.next.next;
}
curr = curr.next;
}
return head;
}
使用虚拟头节点删除
/**
* 添加虚节点方式
* 时间复杂度 O(n)
* 空间复杂度 O(1)
* @param head
* @param val
* @return
*/
public ListNode removeElements(ListNode head, int val) {
if (head == null) {
return head;
}
// 因为删除可能涉及到头节点,所以设置dummy节点,统一操作
ListNode dummy = new ListNode(-1, head);
ListNode pre = dummy;
ListNode cur = head;
while (cur != null) {
if (cur.val == val) {
pre.next = cur.next;
} else {
pre = cur;
}
cur = cur.next;
}
return dummy.next;
}
设计链表
题目
在链表类中实现这些功能:
get(index):获取链表中第 index 个节点的值。如果索引无效,则返回-1。
addAtHead(val):在链表的第一个元素之前添加一个值为 val 的节点。插入后,新节点将成为链表的第一个节点。
addAtTail(val):将值为 val 的节点追加到链表的最后一个元素。
addAtIndex(index,val):在链表中的第 index 个节点之前添加值为 val 的节点。如果 index 等于链表的长度,则该节点将附加到链表的末尾。如果 index 大于链表长度,则不会插入节点。如果index小于0,则在头部插入节点。
deleteAtIndex(index):如果索引 index 有效,则删除链表中的第 index 个节点。
题目链接
示例:
单链表
- 为了减少混乱,使用虚拟节点,cur指向dummy head, cur.next指向dummy head.next。
- 更新删除节点时先 new node.next = cur.next再cur.next = new node。
- 新节点默认指向null。
//单链表
class ListNode {
int val;
ListNode next;
ListNode(){}
ListNode(int val) {
this.val=val;
}
}
class MyLinkedList {
//size存储链表元素的个数
int size;
//虚拟头结点
ListNode head;
//初始化链表
public MyLinkedList() {
size = 0;
head = new ListNode(0);
}
//获取第index个节点的数值
public int get(int index) {
//如果index非法,返回-1
if (index < 0 || index >= size) {
return -1;
}
ListNode currentNode = head;
//包含一个虚拟头节点,所以查找第 index+1 个节点
for (int i = 0; i <= index; i++) {
currentNode = currentNode.next;
}
return currentNode.val;
}
//在链表最前面插入一个节点
public void addAtHead(int val) {
addAtIndex(0, val);
}
//在链表的最后插入一个节点
public void addAtTail(int val) {
addAtIndex(size, val);
}
// 在第 index 个节点之前插入一个新节点,例如index为0,那么新插入的节点为链表的新头节点。
// 如果 index 等于链表的长度,则说明是新插入的节点为链表的尾结点
// 如果 index 大于链表的长度,则返回空
public void addAtIndex(int index, int val) {
if (index > size) {
return;
}
if (index < 0) {
index = 0;
}
size++;
//找到要插入节点的前驱
ListNode pred = head;
for (int i = 0; i < index; i++) {
pred = pred.next;
}
ListNode toAdd = new ListNode(val);
toAdd.next = pred.next;
pred.next = toAdd;
}
//删除第index个节点
public void deleteAtIndex(int index) {
if (index < 0 || index >= size) {
return;
}
size--;
if (index == 0) {
head = head.next;
return;
}
ListNode pred = head;
for (int i = 0; i < index ; i++) {
pred = pred.next;
}
pred.next = pred.next.next;
}
}
双链表
//双链表
class ListNode{
int val;
ListNode next,prev;
ListNode() {};
ListNode(int val){
this.val = val;
}
}
class MyLinkedList {
//记录链表中元素的数量
int size;
//记录链表的虚拟头结点和尾结点
ListNode head,tail;
public MyLinkedList() {
//初始化操作
this.size = 0;
this.head = new ListNode(0);
this.tail = new ListNode(0);
//这一步非常关键,否则在加入头结点的操作中会出现null.next的错误!!!
head.next=tail;
tail.prev=head;
}
public int get(int index) {
//判断index是否有效
if(index<0 || index>=size){
return -1;
}
ListNode cur = this.head;
//判断是哪一边遍历时间更短
if(index >= size / 2){
//tail开始
cur = tail;
for(int i=0; i< size-index; i++){
cur = cur.prev;
}
}else{
for(int i=0; i<= index; i++){
cur = cur.next;
}
}
return cur.val;
}
public void addAtHead(int val) {
//等价于在第0个元素前添加
addAtIndex(0,val);
}
public void addAtTail(int val) {
//等价于在最后一个元素(null)前添加
addAtIndex(size,val);
}
public void addAtIndex(int index, int val) {
//index大于链表长度
if(index>size){
return;
}
//index小于0
if(index<0){
index = 0;
}
size++;
//找到前驱
ListNode pre = this.head;
for(int i=0; i<index; i++){
pre = pre.next;
}
//新建结点
ListNode newNode = new ListNode(val);
newNode.next = pre.next;
pre.next.prev = newNode;
newNode.prev = pre;
pre.next = newNode;
}
public void deleteAtIndex(int index) {
//判断索引是否有效
if(index<0 || index>=size){
return;
}
//删除操作
size--;
ListNode pre = this.head;
for(int i=0; i<index; i++){
pre = pre.next;
}
pre.next.next.prev = pre;
pre.next = pre.next.next;
}
}
翻转链表
题目
题意:反转一个单链表。
题目链接
示例: 输入: 1->2->3->4->5->NULL 输出: 5->4->3->2->1->NULL
双指针法
首先定义两个指针,一个指针cur指向头节点,另一个指针pre初始为null。在创建一个节点temp保存cur.next节点,现将pre赋给cur.next反转箭头,再将temp赋给cur实现向后移动。
// 双指针
class Solution {
public ListNode reverseList(ListNode head) {
ListNode prev = null;
ListNode cur = head;
ListNode temp = null;
while (cur != null) {
temp = cur.next;// 保存下一个节点
cur.next = prev;
prev = cur;
cur = temp;
}
return prev;
}
}
递归法
// 递归
class Solution {
public ListNode reverseList(ListNode head) {
return reverse(null, head);
}
private ListNode reverse(ListNode prev, ListNode cur) {
if (cur == null) {
return prev;
}
ListNode temp = null;
temp = cur.next;// 先保存下一个节点
cur.next = prev;// 反转
// 更新prev、cur位置
// prev = cur;
// cur = temp;
return reverse(cur, temp);
}
}
// 从后向前递归
class Solution {
ListNode reverseList(ListNode head) {
// 边缘条件判断
if(head == null) return null;
if (head.next == null) return head;
// 递归调用,翻转第二个节点开始往后的链表
ListNode last = reverseList(head.next);
// 翻转头节点与第二个节点的指向
head.next.next = head;
// 此时的 head 节点为尾节点,next 需要指向 NULL
head.next = null;
return last;
}
}
标签:203,ListNode,val,head,next,链表,节点,LeetCode
From: https://www.cnblogs.com/hanqk/p/16725350.html