首页 > 其他分享 >MATLAB用GARCH-EVT-Copula极值理论模型VaR预测分析股票投资组合|附代码数据

MATLAB用GARCH-EVT-Copula极值理论模型VaR预测分析股票投资组合|附代码数据

时间:2023-05-22 22:46:04浏览次数:53  
标签:模型 残差 Copula MATLAB GARCH VaR 序列

全文链接:http://tecdat.cn/?p=30426

最近我们被客户要求撰写关于GARCH-EVT-Copula的研究报告,包括一些图形和统计输出。

对VaR计算方法的改进,以更好的度量开放式基金的风险。本项目把基金所持股票看成是一个投资组合,引入Copula来描述多只股票间的非线性相关性,构建多元GARCH-EVT-Copula模型来度量开放式基金的风险,并与其他VaR估计方法的预测结果进行比较

其次是将VaR引入到基金业绩评价中,构造RAROC指标来评价基金业绩,检验该评价指标的可行性。

GARCH-EVT-Copula 模型

首先用GARCH族模型拟合单项资产收益率,并提取标准化残差以满足极值理论的假设前提,接着对标准化残差的上下尾部分采用EVT理论中的广义帕累托分布GPD拟合,中间部分采用高斯核函数来估计其经验累积分布函数,从而得到标准化残差的边缘分布函数 。然后选取适当的Copula 函数,构造多元标准化残差间的相关结构和联合分布函数。

Copula 函数参数估计

本项目中,采用 伪极大似然估计(CML) 方法来估计 Copula 函数的参数 第一步,将金融资产对数收益率数据x通过经验分布函数转化为均匀变量(uniform variates) 第二步,利用密度似然函数估计Copula函数的参数:

图片

GARCH-EVT-Copula 模型计算 VaR

本项目将开放式基金看做是一个资产组合,以每只基金所持有的股票收益率为研究对象,从投资组合的角度利用多元GARCH-EVT-Copula模型来计算基金的VaR值。

 图片

读取数据

图片

[NUM,TXT,RAW]=xlsread('data')

Data=NUM

function [ output_args ] = GEC( input_args )

建立 GARCH 模型

nIndices = size(Data,2); % # 基金数量

spec(1:nIndices) = garchset('Distribution' , 'T' , 'Display', 'off', ...

'VarianceModel', 'GJR', 'P', 1, 'Q', 1, 'R', 1);%对每只基金设置garch模型的

残差自相关性检验

%残差自相关性检验

figure, subplot(2,1,1)

plot(residuals(:,1))

xlabel('时间'), ylabel('残差'), title ('N225收益率残差')

图片

根据 FHS 提取标准化残差

title('N225标准化残差自相关图')

subplot(2,1,2)

autocorr(residuals(:,1).^2)

图片


点击标题查阅往期内容

图片

R语言用GARCH模型波动率建模和预测、回测风险价值 (VaR)分析股市收益率时间序列

图片

左右滑动查看更多

图片

01

图片

02

图片

03

图片

04

图片

GDAXI

%残差自相关性检验

figure, subplot(2,1,1)

plot(residuals(:,2))

图片

图片

GSPC

图片

FCHI

%残差自相关性检验

figure, subplot(2,1,1)

plot(residuals(:,4))

图片

根据 FHS 提取标准化残差

图片

采用 EVT 理论对标准残差估计累计分布函数


% Estimate the Semi-Parametric CDFs

nPoints= 200; % # of sampled points of kernel-smoothed CDF需要拟合的样本点

tailFraction = 0.1; % Decimal fraction of residuals allocated to each tail 小数保存位数

plot(y, (OBJ{index}.cdf(y + Q(2)) - P(2))/P(1))

[F,x] = ecdf(y); % empirical CDF

hold('on'); stairs(x, F, 'r'); grid('on')

legend('拟合的广义 Pareto 累计分布函数','经验累积分布函数','Location','SouthEast');

xlabel('Exceedance'); ylabel('Probability');

title(['标准化残差序列',num2str(index),'的上尾']);

图片


for i=1:242

VaRp(i,:)=pPrice(i+T-242)*exp(VaR(i,:));

end

%%

figure

plot(1:242,pPrice(T-242+2:end),'r-',1:242,VaRp(1:242,1),'g-',1:242,VaRp(1:242,2),'b-',1:242,VaRp(1:242,3),'y-');

title('基金持股收盘价实际与 VaR 预测下限走势图')

图片


plot(1:242, b(:,s),'go-',x,d,'ro',1:0.25:250,0,'b');

legend('未突破 VaR 预测下限','突破 VaR 预测下限','Location','Best' )

title('基金实际持股收盘价与 VaR 预测下限差额')

xlabel('时间日期')

ylabel('差额');

图片

图片

图片

图片

图片

图片

图片

图片

收益率t分布%QQ图

图片

图片

图片

图片

图片

图片

N225收益率平方自相关图和偏相关图

图片


图片

点击文末 “阅读原文”

获取全文完整代码数据资料。

本文选自《MATLAB用GARCH-EVT-Copula模型VaR预测分析股票投资组合》。

点击标题查阅往期内容

R语言使用多元AR-GARCH模型衡量市场风险
R语言GARCH模型对股市sp500收益率bootstrap、滚动估计预测VaR、拟合诊断和蒙特卡罗模拟可视化R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率
R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
GARCH-DCC模型和DCC(MVT)建模估计
R语言预测期货波动率的实现:ARCH与HAR-RV与GARCH,ARFIMA模型比较
ARIMA、GARCH 和 VAR模型估计、预测ts 和 xts格式时间序列
PYTHON用GARCH、离散随机波动率模型DSV模拟估计股票收益时间序列与蒙特卡洛可视化
极值理论 EVT、POT超阈值、GARCH 模型分析股票指数VaR、条件CVaR:多元化投资组合预测风险测度分析
Garch波动率预测的区制转移交易策略
金融时间序列模型ARIMA 和GARCH 在股票市场预测应用
时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据
R语言GARCH建模常用软件包比较、拟合标准普尔SP 500指数波动率时间序列和预测可视化
Python金融时间序列模型ARIMA 和GARCH 在股票市场预测应用
MATLAB用GARCH模型对股票市场收益率时间序列波动的拟合与预测
R语言极值理论 EVT、POT超阈值、GARCH 模型分析股票指数VaR、条件CVaR:多元化投资组合预测风险测度分析
Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列
R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
R语言ARIMA-GARCH波动率模型预测股票市场苹果公司日收益率时间序列
Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测
R语言时间序列GARCH模型分析股市波动率
R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测
matlab实现MCMC的马尔可夫转换ARMA - GARCH模型估计
Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测
使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略
R语言用多元ARMA,GARCH ,EWMA, ETS,随机波动率SV模型对金融时间序列数据建模
R语言股票市场指数:ARMA-GARCH模型和对数收益率数据探索性分析
R语言多元Copula GARCH 模型时间序列预测
R语言使用多元AR-GARCH模型衡量市场风险
R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
R语言用Garch模型和回归模型对股票价格分析
GARCH(1,1),MA以及历史模拟法的VaR比较
matlab估计arma garch 条件均值和方差模型

标签:模型,残差,Copula,MATLAB,GARCH,VaR,序列
From: https://www.cnblogs.com/tecdat/p/17421983.html

相关文章

  • 基于matlab的LDPC译码算法误码率对比仿真,对比BP和BF译码
    1.算法仿真效果matlab2022a仿真结果如下:2.算法涉及理论知识概要LDPC码是麻省理工学院RobertGallager于1963年在博士论文中提出的一种具有稀疏校验矩阵的分组纠错码。几乎适用于所有的信道,因此成为编码界近年来的研究热点。它的性能逼近香农极限,且描述和实现简单,易于进行理论分......
  • 基于matlab的LDPC译码算法误码率对比仿真,对比BP和BF译码
    1.算法仿真效果matlab2022a仿真结果如下: 2.算法涉及理论知识概要       LDPC码是麻省理工学院RobertGallager于1963年在博士论文中提出的一种具有稀疏校验矩阵的分组纠错码。几乎适用于所有的信道,因此成为编码界近年来的研究热点。它的性能逼近香农极限,且描述和实现......
  • m基于GRNN广义回顾神经网络的车牌字符分割和识别算法matlab仿真
    1.算法仿真效果matlab2022a仿真结果如下:2.算法涉及理论知识概要车牌识别系统(VehicleLicensePlateRecognition,VLPR)是计算机视频图像识别技术在车辆牌照识别中的一种应用。车牌识别在高速公路车辆管理中得到广泛应用,电子收费(ETC)系统中,也是结合DSRC技术识别车辆身份的主要手......
  • m基于PCA-SA低纬紧致姿态空间学习算法的单目视频人体姿态提取matlab仿真
    1.算法仿真效果matlab2013b仿真结果如下:2.算法涉及理论知识概要介绍了运动人体的剪影提取,在视频序列中,由于受到复杂背景、遮挡、光照变化等因素的影响,通常的背景分离算法无法有效的对运动人体进行提取,本文介绍了一种基于高斯混合模型和帧差法相结合的运动目标提取算法,从......
  • m基于马尔科夫随机场和Gardner环的WSN网络时间同步matlab仿真
    1.算法仿真效果matlab2022a仿真结果如下:RBS算法的累积误差在50us大于80%;ERBS算法的累积误差在25us大于80%;本文所提出的MRF-MAP-GardnerERBS算法的累积误差在10us大于80%。因此,在降低同步误差方面,MRF-MAP-GardnerERBS算法性能优于RBS算法和ERBS算法。RBS算法的同步误......
  • m基于PCA-SA低纬紧致姿态空间学习算法的单目视频人体姿态提取matlab仿真
    1.算法仿真效果matlab2013b仿真结果如下:              2.算法涉及理论知识概要           介绍了运动人体的剪影提取,在视频序列中,由于受到复杂背景、遮挡、光照变化等因素的影响,通常的背景分离算法无法有效的对运动人体......
  • m基于马尔科夫随机场和Gardner环的WSN网络时间同步matlab仿真
    1.算法仿真效果matlab2022a仿真结果如下:           RBS算法的累积误差在50us大于80%;ERBS算法的累积误差在25us大于80%;本文所提出的MRF-MAP-GardnerERBS算法的累积误差在10us大于80%。因此,在降低同步误差方面,MRF-MAP-GardnerERBS算法性能优于RBS算法和ERBS算法......
  • m基于GRNN广义回顾神经网络的车牌字符分割和识别算法matlab仿真
    1.算法仿真效果matlab2022a仿真结果如下:    2.算法涉及理论知识概要        车牌识别系统(VehicleLicensePlateRecognition,VLPR)是计算机视频图像识别技术在车辆牌照识别中的一种应用。车牌识别在高速公路车辆管理中得到广泛应用,电子收费(ETC)系统中,也是......
  • 机械臂模糊PID控制matlab仿真
    何为模糊PID:链接模糊PID理论基础:链接二自由度机械臂运动建模:  末端位置E(x,y),则两个关节角度可以由下式求得:theta1=atan2(y,x);%theta1=acos(x/sqrt(x*x+y*y));c=sqrt(x*x+y*y);%末端到原点的距离theta3=acos((c*c+a*a-b*b)/(2*a*c));theta2=theta1-......
  • Matlab二维绘图
    %%1.基本绘图指令plot()%%2.矩阵绘图%%3.绘制三条曲线%%4.绘制双纵坐标图%%5.极坐标绘图%%6.极坐标和直角坐标的相互转化%%7.对数坐标系绘图%%8.图形窗分割subplot()%%9.坐标轴设置%%10.图形标识%%11.ezplot()简易绘图指令(......