首页 > 其他分享 >图片统一横纵和分辨率,数据增强

图片统一横纵和分辨率,数据增强

时间:2023-05-20 15:25:24浏览次数:40  
标签:img min 横纵 分辨率 bboxes max path self 图片

1.统一图片横纵向方向

from PIL import Image
import os

folder_path = "D:\Dataset\沙坑/2023.5.18\阿凯"  # Replace with the actual folder path

# Iterate over the files in the folder
for filename in os.listdir(folder_path):
    if filename.endswith(".jpg") or filename.endswith(".png"):  # Adjust file extensions as needed
        file_path = os.path.join(folder_path, filename)

        # Open the image
        image = Image.open(file_path)
        width, height = image.size

        # Compare horizontal and vertical pixel values
        if width > height:
            # Rotate the image 90 degrees clockwise
            rotated_image = image.rotate(-90, expand=True)

            # Save the rotated image, overwrite the original file
            rotated_image.save(file_path)

            print(f"Image '{filename}' rotated.")
        else:
            print(f"No operation required for image '{filename}'.")

代码中的'D:\Dataset\沙坑/2023.5.18\阿凯'替换为想要处理的文件夹路径

2.统一图片分辨率

使用如下代码对图片分辨率进行统一

from PIL import Image
import os


def resize_images(folder_path, target_resolution):
    # 遍历文件夹中的所有文件
    for filename in os.listdir(folder_path):
        file_path = os.path.join(folder_path, filename)

        # 检查文件是否是图片
        if not os.path.isfile(file_path) or not any(
                file_path.endswith(extension) for extension in ['.jpg', '.jpeg', '.png']):
            continue

        # 打开图片
        image = Image.open(file_path)

        # 获取原始分辨率
        original_resolution = image.size

        # 计算调整比例
        ratio = min(target_resolution[0] / original_resolution[0], target_resolution[1] / original_resolution[1])

        # 计算调整后的尺寸
        resized_size = (int(original_resolution[0] * ratio), int(original_resolution[1] * ratio))

        # 调整图片分辨率
        resized_image = image.resize(resized_size)

        # 创建空白画布
        canvas = Image.new('RGB', target_resolution, (255, 255, 255))

        # 在画布上居中粘贴调整后的图片
        offset = ((target_resolution[0] - resized_size[0]) // 2, (target_resolution[1] - resized_size[1]) // 2)
        canvas.paste(resized_image, offset)

        # 保存调整后的图片
        canvas.save(file_path)


# 指定文件夹路径和目标分辨率
folder_path = 'E:\knowledge\YOLO V5\yolov5-5.0\VOCdevkit\VOC2007\JPEGImages'  # 替换为你的文件夹路径
target_resolution = (720, 960)  # 替换为你的目标分辨率

# 调用函数进行图片分辨率统一
resize_images(folder_path, target_resolution)

3.进行数据增强

将图片及xml格式的标签进行数据增强

建立一个文件夹

image-20230519094945415

其中DataAugmentforLabelImg.py文件放入以下代码

data文件夹中则包含四个子文件夹:Annotations、Annotations2、Images、Images2,如此无需修改代码

image-20230519095030636

# -*- coding=utf-8 -*-
##############################################################
# description:
#     data augmentation for obeject detection
# author:
#     pureyang 2019-08-26
# 参考:https://github.com/maozezhong/CV_ToolBox/blob/master/DataAugForObjectDetection

##############################################################

# 包括:
#     1. 裁剪(需改变bbox)
#     2. 平移(需改变bbox)
#     3. 改变亮度
#     4. 加噪声
#     5. 旋转角度(需要改变bbox)
#     6. 镜像(需要改变bbox)
#     7. cutout
#  注意:
#     random.seed(),相同的seed,产生的随机数是一样的!!


import time
import random
import copy
import cv2
import os
import math
import numpy as np
from skimage.util import random_noise
from lxml import etree, objectify
import xml.etree.ElementTree as ET
import argparse


# 显示图片
def show_pic(img, bboxes=None):
    '''
    输入:
        img:图像array
        bboxes:图像的所有boudning box list, 格式为[[x_min, y_min, x_max, y_max]....]
        names:每个box对应的名称
    '''
    for i in range(len(bboxes)):
        bbox = bboxes[i]
        x_min = bbox[0]
        y_min = bbox[1]
        x_max = bbox[2]
        y_max = bbox[3]
        cv2.rectangle(img, (int(x_min), int(y_min)), (int(x_max), int(y_max)), (0, 255, 0), 3)
    cv2.namedWindow('pic', 0)  # 1表示原图
    cv2.moveWindow('pic', 0, 0)
    cv2.resizeWindow('pic', 1200, 800)  # 可视化的图片大小
    cv2.imshow('pic', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


# 图像均为cv2读取
class DataAugmentForObjectDetection():
    def __init__(self, rotation_rate=0.5, max_rotation_angle=5,
                 crop_rate=0.5, shift_rate=0.5, change_light_rate=0.5,
                 add_noise_rate=0.5, flip_rate=0.5,
                 cutout_rate=0.5, cut_out_length=50, cut_out_holes=1, cut_out_threshold=0.5,
                 is_addNoise=True, is_changeLight=True, is_cutout=True, is_rotate_img_bbox=True,
                 is_crop_img_bboxes=True, is_shift_pic_bboxes=True, is_filp_pic_bboxes=True):

        # 配置各个操作的属性
        self.rotation_rate = rotation_rate
        self.max_rotation_angle = max_rotation_angle
        self.crop_rate = crop_rate
        self.shift_rate = shift_rate
        self.change_light_rate = change_light_rate
        self.add_noise_rate = add_noise_rate
        self.flip_rate = flip_rate
        self.cutout_rate = cutout_rate

        self.cut_out_length = cut_out_length
        self.cut_out_holes = cut_out_holes
        self.cut_out_threshold = cut_out_threshold

        # 是否使用某种增强方式
        self.is_addNoise = is_addNoise
        self.is_changeLight = is_changeLight
        self.is_cutout = is_cutout
        self.is_rotate_img_bbox = is_rotate_img_bbox
        self.is_crop_img_bboxes = is_crop_img_bboxes
        self.is_shift_pic_bboxes = is_shift_pic_bboxes
        self.is_filp_pic_bboxes = is_filp_pic_bboxes

    # 加噪声
    def _addNoise(self, img):
        '''
        输入:
            img:图像array
        输出:
            加噪声后的图像array,由于输出的像素是在[0,1]之间,所以得乘以255
        '''
        # return cv2.GaussianBlur(img, (11, 11), 0)
        return random_noise(img, mode='gaussian', seed=int(time.time()), clip=True) * 255

    # 调整亮度
    def _changeLight(self, img):
        alpha = random.uniform(0.35, 1)
        blank = np.zeros(img.shape, img.dtype)
        return cv2.addWeighted(img, alpha, blank, 1 - alpha, 0)

    # cutout
    def _cutout(self, img, bboxes, length=100, n_holes=1, threshold=0.5):
        '''
        原版本:https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py
        Randomly mask out one or more patches from an image.
        Args:
            img : a 3D numpy array,(h,w,c)
            bboxes : 框的坐标
            n_holes (int): Number of patches to cut out of each image.
            length (int): The length (in pixels) of each square patch.
        '''

        def cal_iou(boxA, boxB):
            '''
            boxA, boxB为两个框,返回iou
            boxB为bouding box
            '''
            # determine the (x, y)-coordinates of the intersection rectangle
            xA = max(boxA[0], boxB[0])
            yA = max(boxA[1], boxB[1])
            xB = min(boxA[2], boxB[2])
            yB = min(boxA[3], boxB[3])

            if xB <= xA or yB <= yA:
                return 0.0

            # compute the area of intersection rectangle
            interArea = (xB - xA + 1) * (yB - yA + 1)

            # compute the area of both the prediction and ground-truth
            # rectangles
            boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
            boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)
            iou = interArea / float(boxBArea)
            return iou

        # 得到h和w
        if img.ndim == 3:
            h, w, c = img.shape
        else:
            _, h, w, c = img.shape
        mask = np.ones((h, w, c), np.float32)
        for n in range(n_holes):
            chongdie = True  # 看切割的区域是否与box重叠太多
            while chongdie:
                y = np.random.randint(h)
                x = np.random.randint(w)

                y1 = np.clip(y - length // 2, 0,
                             h)  # numpy.clip(a, a_min, a_max, out=None), clip这个函数将将数组中的元素限制在a_min, a_max之间,大于a_max的就使得它等于 a_max,小于a_min,的就使得它等于a_min
                y2 = np.clip(y + length // 2, 0, h)
                x1 = np.clip(x - length // 2, 0, w)
                x2 = np.clip(x + length // 2, 0, w)

                chongdie = False
                for box in bboxes:
                    if cal_iou([x1, y1, x2, y2], box) > threshold:
                        chongdie = True
                        break
            mask[y1: y2, x1: x2, :] = 0.
        img = img * mask
        return img

    # 旋转
    def _rotate_img_bbox(self, img, bboxes, angle=5, scale=1.):
        '''
        参考:https://blog.csdn.net/u014540717/article/details/53301195crop_rate
        输入:
            img:图像array,(h,w,c)
            bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
            angle:旋转角度
            scale:默认1
        输出:
            rot_img:旋转后的图像array
            rot_bboxes:旋转后的boundingbox坐标list
        '''
        # ---------------------- 旋转图像 ----------------------
        w = img.shape[1]
        h = img.shape[0]
        # 角度变弧度
        rangle = np.deg2rad(angle)  # angle in radians
        # now calculate new image width and height
        nw = (abs(np.sin(rangle) * h) + abs(np.cos(rangle) * w)) * scale
        nh = (abs(np.cos(rangle) * h) + abs(np.sin(rangle) * w)) * scale
        # ask OpenCV for the rotation matrix
        rot_mat = cv2.getRotationMatrix2D((nw * 0.5, nh * 0.5), angle, scale)
        # calculate the move from the old center to the new center combined
        # with the rotation
        rot_move = np.dot(rot_mat, np.array([(nw - w) * 0.5, (nh - h) * 0.5, 0]))
        # the move only affects the translation, so update the translation
        rot_mat[0, 2] += rot_move[0]
        rot_mat[1, 2] += rot_move[1]
        # 仿射变换
        rot_img = cv2.warpAffine(img, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4)

        # ---------------------- 矫正bbox坐标 ----------------------
        # rot_mat是最终的旋转矩阵
        # 获取原始bbox的四个中点,然后将这四个点转换到旋转后的坐标系下
        rot_bboxes = list()
        for bbox in bboxes:
            xmin = bbox[0]
            ymin = bbox[1]
            xmax = bbox[2]
            ymax = bbox[3]
            point1 = np.dot(rot_mat, np.array([(xmin + xmax) / 2, ymin, 1]))
            point2 = np.dot(rot_mat, np.array([xmax, (ymin + ymax) / 2, 1]))
            point3 = np.dot(rot_mat, np.array([(xmin + xmax) / 2, ymax, 1]))
            point4 = np.dot(rot_mat, np.array([xmin, (ymin + ymax) / 2, 1]))
            # 合并np.array
            concat = np.vstack((point1, point2, point3, point4))
            # 改变array类型
            concat = concat.astype(np.int32)
            # 得到旋转后的坐标
            rx, ry, rw, rh = cv2.boundingRect(concat)
            rx_min = rx
            ry_min = ry
            rx_max = rx + rw
            ry_max = ry + rh
            # 加入list中
            rot_bboxes.append([rx_min, ry_min, rx_max, ry_max])

        return rot_img, rot_bboxes

    # 裁剪
    def _crop_img_bboxes(self, img, bboxes):
        '''
        裁剪后的图片要包含所有的框
        输入:
            img:图像array
            bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
        输出:
            crop_img:裁剪后的图像array
            crop_bboxes:裁剪后的bounding box的坐标list
        '''
        # ---------------------- 裁剪图像 ----------------------
        w = img.shape[1]
        h = img.shape[0]
        x_min = w  # 裁剪后的包含所有目标框的最小的框
        x_max = 0
        y_min = h
        y_max = 0
        for bbox in bboxes:
            x_min = min(x_min, bbox[0])
            y_min = min(y_min, bbox[1])
            x_max = max(x_max, bbox[2])
            y_max = max(y_max, bbox[3])

        d_to_left = x_min  # 包含所有目标框的最小框到左边的距离
        d_to_right = w - x_max  # 包含所有目标框的最小框到右边的距离
        d_to_top = y_min  # 包含所有目标框的最小框到顶端的距离
        d_to_bottom = h - y_max  # 包含所有目标框的最小框到底部的距离

        # 随机扩展这个最小框
        crop_x_min = int(x_min - random.uniform(0, d_to_left))
        crop_y_min = int(y_min - random.uniform(0, d_to_top))
        crop_x_max = int(x_max + random.uniform(0, d_to_right))
        crop_y_max = int(y_max + random.uniform(0, d_to_bottom))

        # 随机扩展这个最小框 , 防止别裁的太小
        # crop_x_min = int(x_min - random.uniform(d_to_left//2, d_to_left))
        # crop_y_min = int(y_min - random.uniform(d_to_top//2, d_to_top))
        # crop_x_max = int(x_max + random.uniform(d_to_right//2, d_to_right))
        # crop_y_max = int(y_max + random.uniform(d_to_bottom//2, d_to_bottom))

        # 确保不要越界
        crop_x_min = max(0, crop_x_min)
        crop_y_min = max(0, crop_y_min)
        crop_x_max = min(w, crop_x_max)
        crop_y_max = min(h, crop_y_max)

        crop_img = img[crop_y_min:crop_y_max, crop_x_min:crop_x_max]

        # ---------------------- 裁剪boundingbox ----------------------
        # 裁剪后的boundingbox坐标计算
        crop_bboxes = list()
        for bbox in bboxes:
            crop_bboxes.append([bbox[0] - crop_x_min, bbox[1] - crop_y_min, bbox[2] - crop_x_min, bbox[3] - crop_y_min])

        return crop_img, crop_bboxes

    # 平移
    def _shift_pic_bboxes(self, img, bboxes):
        '''
        参考:https://blog.csdn.net/sty945/article/details/79387054
        平移后的图片要包含所有的框
        输入:
            img:图像array
            bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
        输出:
            shift_img:平移后的图像array
            shift_bboxes:平移后的bounding box的坐标list
        '''
        # ---------------------- 平移图像 ----------------------
        w = img.shape[1]
        h = img.shape[0]
        x_min = w  # 裁剪后的包含所有目标框的最小的框
        x_max = 0
        y_min = h
        y_max = 0
        for bbox in bboxes:
            x_min = min(x_min, bbox[0])
            y_min = min(y_min, bbox[1])
            x_max = max(x_max, bbox[2])
            y_max = max(y_max, bbox[3])

        d_to_left = x_min  # 包含所有目标框的最大左移动距离
        d_to_right = w - x_max  # 包含所有目标框的最大右移动距离
        d_to_top = y_min  # 包含所有目标框的最大上移动距离
        d_to_bottom = h - y_max  # 包含所有目标框的最大下移动距离

        x = random.uniform(-(d_to_left - 1) / 3, (d_to_right - 1) / 3)
        y = random.uniform(-(d_to_top - 1) / 3, (d_to_bottom - 1) / 3)

        M = np.float32([[1, 0, x], [0, 1, y]])  # x为向左或右移动的像素值,正为向右负为向左; y为向上或者向下移动的像素值,正为向下负为向上
        shift_img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))

        # ---------------------- 平移boundingbox ----------------------
        shift_bboxes = list()
        for bbox in bboxes:
            shift_bboxes.append([bbox[0] + x, bbox[1] + y, bbox[2] + x, bbox[3] + y])

        return shift_img, shift_bboxes

    # 镜像
    def _filp_pic_bboxes(self, img, bboxes):
        '''
            参考:https://blog.csdn.net/jningwei/article/details/78753607
            平移后的图片要包含所有的框
            输入:
                img:图像array
                bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
            输出:
                flip_img:平移后的图像array
                flip_bboxes:平移后的bounding box的坐标list
        '''
        # ---------------------- 翻转图像 ----------------------

        flip_img = copy.deepcopy(img)
        h, w, _ = img.shape

        sed = random.random()

        if 0 < sed < 0.33:  # 0.33的概率水平翻转,0.33的概率垂直翻转,0.33是对角反转
            flip_img = cv2.flip(flip_img, 0)  # _flip_x
            inver = 0
        elif 0.33 < sed < 0.66:
            flip_img = cv2.flip(flip_img, 1)  # _flip_y
            inver = 1
        else:
            flip_img = cv2.flip(flip_img, -1)  # flip_x_y
            inver = -1

        # ---------------------- 调整boundingbox ----------------------
        flip_bboxes = list()
        for box in bboxes:
            x_min = box[0]
            y_min = box[1]
            x_max = box[2]
            y_max = box[3]
            
            if inver == 0:
                #0:垂直翻转
                flip_bboxes.append([x_min, h - y_max, x_max, h - y_min])
            elif inver == 1:
                # 1:水平翻转
                flip_bboxes.append([w - x_max, y_min, w - x_min, y_max])
            elif inver == -1:
                # -1:水平垂直翻转
                flip_bboxes.append([w - x_max, h - y_max, w - x_min, h - y_min])
        return flip_img, flip_bboxes

    # 图像增强方法
    def dataAugment(self, img, bboxes):
        '''
        图像增强
        输入:
            img:图像array
            bboxes:该图像的所有框坐标
        输出:
            img:增强后的图像
            bboxes:增强后图片对应的box
        '''
        change_num = 0  # 改变的次数
        # print('------')
        while change_num < 1:  # 默认至少有一种数据增强生效

            if self.is_rotate_img_bbox:
                if random.random() > self.rotation_rate:  # 旋转
                    change_num += 1
                    angle = random.uniform(-self.max_rotation_angle, self.max_rotation_angle)
                    scale = random.uniform(0.7, 0.8)
                    img, bboxes = self._rotate_img_bbox(img, bboxes, angle, scale)

            if self.is_shift_pic_bboxes:
                if random.random() < self.shift_rate:  # 平移
                    change_num += 1
                    img, bboxes = self._shift_pic_bboxes(img, bboxes)

            if self.is_changeLight:
                if random.random() > self.change_light_rate:  # 改变亮度
                    change_num += 1
                    img = self._changeLight(img)

            if self.is_addNoise:
                if random.random() < self.add_noise_rate:  # 加噪声
                    change_num += 1
                    img = self._addNoise(img)
            if self.is_cutout:
                if random.random() < self.cutout_rate:  # cutout
                    change_num += 1
                    img = self._cutout(img, bboxes, length=self.cut_out_length, n_holes=self.cut_out_holes,
                                       threshold=self.cut_out_threshold)
            if self.is_filp_pic_bboxes:
                if random.random() < self.flip_rate:  # 翻转
                    change_num += 1
                    img, bboxes = self._filp_pic_bboxes(img, bboxes)

        return img, bboxes


# xml解析工具
class ToolHelper():
    # 从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]
    def parse_xml(self, path):
        '''
        输入:
            xml_path: xml的文件路径
        输出:
            从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]
        '''
        tree = ET.parse(path)
        root = tree.getroot()
        objs = root.findall('object')
        coords = list()
        for ix, obj in enumerate(objs):
            name = obj.find('name').text
            box = obj.find('bndbox')
            x_min = int(box[0].text)
            y_min = int(box[1].text)
            x_max = int(box[2].text)
            y_max = int(box[3].text)
            coords.append([x_min, y_min, x_max, y_max, name])
        return coords

    # 保存图片结果
    def save_img(self, file_name, save_folder, img):
        cv2.imwrite(os.path.join(save_folder, file_name), img)

    # 保持xml结果
    def save_xml(self, file_name, save_folder, img_info, height, width, channel, bboxs_info):
        '''
        :param file_name:文件名
        :param save_folder:#保存的xml文件的结果
        :param height:图片的信息
        :param width:图片的宽度
        :param channel:通道
        :return:
        '''
        folder_name, img_name = img_info  # 得到图片的信息

        E = objectify.ElementMaker(annotate=False)

        anno_tree = E.annotation(
            E.folder(folder_name),
            E.filename(img_name),
            E.path(os.path.join(folder_name, img_name)),
            E.source(
                E.database('Unknown'),
            ),
            E.size(
                E.width(width),
                E.height(height),
                E.depth(channel)
            ),
            E.segmented(0),
        )

        labels, bboxs = bboxs_info  # 得到边框和标签信息
        for label, box in zip(labels, bboxs):
            anno_tree.append(
                E.object(
                    E.name(label),
                    E.pose('Unspecified'),
                    E.truncated('0'),
                    E.difficult('0'),
                    E.bndbox(
                        E.xmin(box[0]),
                        E.ymin(box[1]),
                        E.xmax(box[2]),
                        E.ymax(box[3])
                    )
                ))

        etree.ElementTree(anno_tree).write(os.path.join(save_folder, file_name), pretty_print=True)


if __name__ == '__main__':

    need_aug_num = 10  # 每张图片需要增强的次数

    is_endwidth_dot = True  # 文件是否以.jpg或者png结尾

    dataAug = DataAugmentForObjectDetection()  # 数据增强工具类

    toolhelper = ToolHelper()  # 工具

    # 获取相关参数
    parser = argparse.ArgumentParser()
    parser.add_argument('--source_img_path', type=str, default='data/Images')
    parser.add_argument('--source_xml_path', type=str, default='data/Annotations')
    parser.add_argument('--save_img_path', type=str, default='data/Images2')
    parser.add_argument('--save_xml_path', type=str, default='data/Annotations2')
    args = parser.parse_args()
    source_img_path = args.source_img_path  # 图片原始位置
    source_xml_path = args.source_xml_path  # xml的原始位置

    save_img_path = args.save_img_path  # 图片增强结果保存文件
    save_xml_path = args.save_xml_path  # xml增强结果保存文件

    # 如果保存文件夹不存在就创建
    if not os.path.exists(save_img_path):
        os.mkdir(save_img_path)

    if not os.path.exists(save_xml_path):
        os.mkdir(save_xml_path)

    for parent, _, files in os.walk(source_img_path):
        files.sort()
        for file in files:
            cnt = 0
            pic_path = os.path.join(parent, file)
            xml_path = os.path.join(source_xml_path, file[:-4] + '.xml')
            values = toolhelper.parse_xml(xml_path)  # 解析得到box信息,格式为[[x_min,y_min,x_max,y_max,name]]
            coords = [v[:4] for v in values]  # 得到框
            labels = [v[-1] for v in values]  # 对象的标签

            # 如果图片是有后缀的
            if is_endwidth_dot:
                # 找到文件的最后名字
                dot_index = file.rfind('.')
                _file_prefix = file[:dot_index]  # 文件名的前缀
                _file_suffix = file[dot_index:]  # 文件名的后缀
            img = cv2.imread(pic_path)

            # show_pic(img, coords)  # 显示原图
            while cnt < need_aug_num:  # 继续增强
                auged_img, auged_bboxes = dataAug.dataAugment(img, coords)
                auged_bboxes_int = np.array(auged_bboxes).astype(np.int32)
                height, width, channel = auged_img.shape  # 得到图片的属性
                img_name = '{}_{}{}'.format(_file_prefix, cnt + 1, _file_suffix)  # 图片保存的信息
                toolhelper.save_img(img_name, save_img_path,
                                    auged_img)  # 保存增强图片

                toolhelper.save_xml('{}_{}.xml'.format(_file_prefix, cnt + 1),
                                    save_xml_path, (save_img_path, img_name), height, width, channel,
                                    (labels, auged_bboxes_int))  # 保存xml文件
                # show_pic(auged_img, auged_bboxes)  # 强化后的图
                print(img_name)
                cnt += 1  # 继续增强下一张

标签:img,min,横纵,分辨率,bboxes,max,path,self,图片
From: https://www.cnblogs.com/qqsj/p/17417244.html

相关文章

  • 推荐AVIF图片格式转换器
    推荐一个可以把图片转换成AVIF格式的命令行软件。exe文件下载地址,选择avifenc.exe(即AVIF编码器)下载,即可把图片转换为AVIF格式,从而节省大量空间。其中avifdec.exe是AVIF解码器,用于把AVIF格式转换为其他格式。其中zip文件是用于Windows下编译的源码。源代码地址:AOMediaCodec/libav......
  • Typora上传博客园教程:解决本地图片问题
    一、个人使用感受:推荐使用我之前还担忧,该软件上传的图片会占用我们博客的上传文件的100m空间,或者占用我们的相册,但是经过一番测试与分析后,我才发现,它上传的地方和我们在博客园在线写文章时插入图片一样,都不会占用我们个人的空间,所以不存在空间会越用越小的问题,尽情用就完事了。......
  • ChatGPT为什么能生成图片?
    有小伙伴说我想用ChatGPT生成图片怎么操作,ChatGPT怎么画图等这里阐明一下,ChatGPT是不能够做到画图的因为它是一种自然语言处理模型,主要用于处理文本和语言相关的任务,例如问答、对话、翻译等。但是,我们可以使用ChatGPT来生成描述绘图的自然语言文本,从而实现绘图的效果。也可以利用文......
  • odoo 给字段加颜色, 图片显示控制
    <field name="operator" style="background:Blue;" attrs="{'readonly':[('state','=','done')]}"/>ifyouneedtogivecolorforyourletters,then usestyle="color:Red;"......
  • 图片URL转Base64编码
    @Slf4jpublicclassUrlToBase64Util{/***图片URL转Base64编码*@paramimgUrl图片URL*@returnBase64编码*/publicstaticStringimageUrlToBase64(StringimgUrl){URLurl=null;InputStreamis=null;ByteArrayOutputStream......
  • [SEO经验分享]内链优化之-图片关键词分离
    本文转载自:[SEO经验分享]内链优化之-图片关键词分离更多内容请访问钻芒博客:https://www.zuanmang.net看了一场公开课,课程中有一部分讲了头部导航栏关键词分离。效果就是把传统的网站首页栏目,让百度的蜘蛛抓取来是自定义的关键词,但是用户访问仍显示为网站首页,实现不影响用户体验......
  • 使用taro+canvas实现微信小程序的图片分享功能
    业务场景二轮充电业务中,用户充电完成后在订单详情页展示订单相关信息,用户点击分享按钮唤起微信小程序分享菜单,将生成的图片海报分享给微信好友或者下载到本地,好友可通过扫描海报中的二维码加群领取优惠。使用场景及功能:微信小程序生成海报图片分享好友下载图片使用技术:Taro......
  • Spartacus product 明细页面的产品图片显示
    Spartacus产品明细页面(productdetailpage)如下图所示:其selector为cx-product-images:在Spartacus实现里,有两个Component都使用了这个selector,但是PDP页面使用的是前者,即下图图例1所示的ProductImageZoomProductImagesComponent:这个Component里有一个cx-m......
  • delphi 写的图片合成工具---品一套图大师 v1.1.0
    在石材行业,套效果图是一个非常重要而经常要面临的工作,如果自身不懂得PS,那就需要经常去麻烦别人,而且客户可能没有办法一直在等你的效果图...基于以上的种种原因,所以就开发了这个工具,只需把图片拉到这工具,点点这个点点那,不到1分钟就可以做出漂亮的效果图~ 软件主界面: 需要套......
  • 激光雕刻机图片解析C#上位机stm32f407控制板源码 视频中机器运行
    激光雕刻机图片解析C#上位机stm32f407控制板源码视频中机器运行慢是因为测试激光头功率小,跑快了光斑在像素点烧蚀时间短打不出痕迹,需要速度快把激光头功率加大即可支持多种常用图片格式的转换例如jpg转bmp,支持彩色图片转灰度图,灰度图转二值图也称黑白图,转换完成点击工具栏中的计算......