首页 > 其他分享 >《asyncio 系列》8. 在 asyncio 中通过流(StreamReader、StreamWriter)来实现 TCP 请求的发送与接收

《asyncio 系列》8. 在 asyncio 中通过流(StreamReader、StreamWriter)来实现 TCP 请求的发送与接收

时间:2023-05-08 14:55:36浏览次数:50  
标签:StreamWriter 协程 self await TCP ._ StreamReader asyncio

楔子

在编写网络应用程序时,我们使用了 socket 库来读取和写入客户端。虽然在构建低级网络库时直接使用套接字很有效,但用法上还是有些复杂,例如启动服务端、等待客户端连接以及向客户端发送数据等等。asyncio 的设计者意识到这一点,并构建了网络流 API,这些更高级的 API 比套接字更容易使用,利用这些 API 创建的任何客户端、服务端应用程序,比我们自己使用套接字更方便且更健壮。而流是在 asyncio 中构建基于网络的应用程序的推荐方法。

什么是流

在 asyncio 中,流是一组高级的类和函数,用于创建、管理网络连接和通用数报流。使用它们,我们可以创建客户端连接来读取和写入数据,也可以创建服务端并自己管理它们。这些 API 抽象了很多关于管理套接字的方法,例如处理 SSL 或丢失的连接,极大地减轻了开发人员的工作负担。

流 API 构建在称为传输和协议的一组较低级别的 API 之上,这些 API 直接包装了我们在前几章中使用的套接字,并提供了一个简单的方式来读取套接字数据以及将数据写入套接字。

这些 API 的结构与其他 API 稍有不同,因为它们使用回调样式设计。与之前所做的那些主动等待套接字数据不同,当数据可用时,我们会调用的实例上的某个方法,然后根据需要来处理在此方法中收到的数据。下面就来学习这些基于回调的 API 是如何工作的,让我们首先看看如何通过构建一个基本的 HTTP 客户端来使用较低级的传输和协议。

传输和协议

在高层次上,传输是与任意数据流进行通信的抽象,与套接字或任何数据流(如标准输入)通信时,我们将使用一组熟悉的操作。从数据源读取数据或向目标写入数据,当我们完成对它的处理时,将关闭相应的数据源。而套接字完全符合我们定义的这种传输抽象的方式,也就是说,读取和写入数据,一旦完成,就关闭它。简而言之,传输提供了向源发送数据和从源接收数据的定义。传输有多种实现,具体取决于我们使用的源的类型,我们主要关注 ReadTransport、WriteTransport 和 Transport,还有其他一些用于处理 UDP 连接和子进程通信的实现。

在套接字之间来回传输数据只是这个过程的一部分,那么套接字的生命周期是怎样的呢?我们建立连接,写入数据,然后处理得到的任何响应,这些是协议拥有的一组操作。注意,这里的协议只指一个 Python 类,而不是 HTTP 或 FTP 之类的协议。传输可以管理数据的传递,并在事件发生时调用协议上的方法,例如建立连接或准备处理数据。

为了解传输和协议如何协同工作,我们将构建一个基本应用程序来运行单个 HTTP GET 请求。我们需要做的第一件事是定义一个继承 asyncio.Protocol 的类,并覆盖父类的一些方法来发出请求、从请求中接收数据,并处理连接中的任何错误。

需要实现的第一个协议方法是 connection_made,当底层套接字与 HTTP 服务器成功连接时,传输将调用此方法。此方法使用 Transport 作为参数,我们可以使用它与服务器通信。这种情况下,将使用传输立即发送HTTP 请求。

需要实现的第二个方法是 data_received,传输在接收数据时调用此方法,并将其作为字节传递给我们。这个方法可以被多次调用,所以需要创建一个内部缓冲区来存储数据。

import asyncio
from asyncio import Transport, AbstractEventLoop
from typing import Optional

class HTTPGetClientProtocol(asyncio.Protocol):

    def __init__(self, host: str, loop: AbstractEventLoop):
        self._host = host
        self._future = loop.create_future()
        self._transport: Optional[Transport] = None
        self._response_buffer: bytes = b""

    async def get_response(self):
        # 等待 self._future,直到从服务器得到响应并写入 self._future
        return await self._future

    def _get_request_bytes(self) -> bytes:
        # 创建 HTTP 请求
        request = ("GET / HTTP/1.1\r\n"
                   "Connection: close\r\n"
                   f"Host: {self._host}\r\n\r\n")
        return request.encode("utf-8")

    def connection_made(self, transport: Transport) -> None:
        """底层套接字和服务器端建立连接时会调用此方法"""
        print(f"和 {self._host} 建立连接")
        # 会自动传入一个 transport 参数,它就是传输,我们用它来管理数据
        # 并在事件发生时调用协议上的方法,比如这里的 connection_made,我们将传输保存起来
        self._transport = transport
        # 调用传输的 write 方法写入数据
        self._transport.write(self._get_request_bytes())

    def data_received(self, data: bytes) -> None:
        """传输在收到数据时会调用协议的 data_received 方法"""
        print("收到数据")
        self._response_buffer += data

    def eof_received(self) -> Optional[bool]:
        """
        如果服务端已经将所有数据都返回完毕,那么会关闭连接
        此时传输会自动调用协议的 eof_received 方法
        """
        print("数据全部接收完毕")
        # 响应数据都接收完毕,将其写入 future 中
        self._future.set_result(self._response_buffer)
        # 该方法返回一个布尔值,用于确定如何关闭传输(底层套接字)
        # 返回 False 则让传输自行关闭,返回 True 意味着需要编写协议来关闭
        # 由于当前不需要在关闭时执行什么特殊逻辑,所以返回 False 即可
        # 因此我们不需要手动处理关闭传输
        return False

    def connection_lost(self, exc: Optional[Exception]) -> None:
        """当连接关闭时会调用此方法"""
        # 如果连接正常关闭,则什么也不做
        if exc is None:
            print("连接正常关闭")
        else:
            # 否则将异常设置到 future 里面
            self._future.set_exception(exc)

async def make_request(host: str, port: int, loop: AbstractEventLoop):
    # 协议工厂,调用之后创建一个协议实例
    def protocol_factory():
        return HTTPGetClientProtocol(host, loop)
    # create_connection 将创建到给定主机的套接字连接,并将其包装在适当的传输中
    # 当建立连接之后,会自动调用协议的 connection_made,在该方法中会向目的主机发送请求
    # 当数据达到时,会自动协议的 data_received,数据返回完毕时自动调用协议的 eof_received
    transport, protocol = await loop.create_connection(protocol_factory, host=host, port=port)
    # 将数据写入 future 之后,调用 get_response 得到响应数据
    # 在 create_connection 里面我们传入了一个协议工厂,在里面会自动调用
    # 返回的 transport 就是传输,protocol 就是内部的创建协议实例,但传输这里我们不需要
    return await protocol.get_response()

async def main():
    loop = asyncio.get_running_loop()
    result = await make_request("www.baidu.com", 80, loop)
    print("百度一下".encode("utf-8") in result)

asyncio.run(main())
"""
和 www.baidu.com 建立连接
收到数据
收到数据
数据全部接收完毕
True
连接正常关闭
"""

我们已经学会了使用传输和协议,但这些 API 是较低级别的,因此不推荐。我们更建议使用流,这是一种扩展了传输和协议的更高级别的抽象。

流读取与流写人

传输和协议是较低级别的 API,最适合在发送和接收数据时直接控制所发生的事情。例如,如果正在设计一个网络库或 Web 框架,可能会考虑传输和协议。但对于大多数应用程序,我们不需要这种级别的控制,使用传输和协议将会编写一些重复的代码。

asyncio 的设计者意识到了这一点,并创建了更高级别的流 API,该 API 将传输和协议的标准用例封装成两个易于理解和使用的类:StreamReader 和 StreamWriter。顾名思义,它们分别处理对流的读取和写入,使用这些类是在 asyncio 中开发网络应用程序的推荐方法。

为帮助你了解如何使用这些 API,下面列举一个发出 HTTP GET 请求并将其转换为流的示例。asyncio 没有直接生成 StreamReader 和 StreamWriter 的实例,而是提供一个名为 open_connection 的库协程函数,它将创建这些实例。这个协程接收目的主机的地址和端口,并以元组形式返回 StreamReader 和 StreamWriter。我们的计划是使用 StreamWriter 发送 HTTP 请求,并使用 StreamReader 读取响应。StreamReader 方法很容易理解,我们有一个方便的 readline 协程方法,它会一直等到我们获得一行数据,或者也可以使用 SteamReader 的 read 协程方法等待指定数量的字节到达。

StreamWriter 稍微复杂一些,它有一个 write 方法,该方法是一个普通方法而不是协程。在内部,流写入器尝试立即写入套接字的输出缓冲区,但此缓冲区可能已满。如果套接字的写入缓冲区已满,则数据将存储在内部队列中,以后可以进入缓冲区。但这带来一个潜在问题,即调用 write 不一定会立即发送数据,这会导致什么后果呢?想象一下,网络连接变慢了,每秒只能发送 1KB,但应用程序每秒写入 1MB。这种情况下,应用程序的写缓冲区填满的速度,比把数据发送到套接字缓冲区的速度快得多,最终将达到机器内存的限制,并导致崩溃。

那怎么能等到所有数据都正确地发送出去呢?为解决这个问题,可使用一个叫做 drain 的协程方法。这个协程将阻塞(直到所有排队的数据被发送到套接字),确保我们在继续运行程序之前,已经写出所有内容。从技术角度看,不必在每次写入后都调用 drain,但这有助于防止错误发生。

import asyncio
from asyncio import StreamReader
from typing import AsyncGenerator

async def read_until_empty(stream_reader: StreamReader) -> AsyncGenerator[bytes, None]:
    # 读取一行,直到没有任何剩余数据
    while response := await stream_reader.readline():
        yield response

async def main():
    host = "www.baidu.com"
    request = ("GET / HTTP/1.1\r\n"
               "Connection: close\r\n"
               f"Host: {host}\r\n\r\n")

    stream_reader, stream_write = await asyncio.open_connection(host, 80)
    try:
        stream_write.write(request.encode("utf-8"))
        await stream_write.drain()
        response = b"".join([r async for r in read_until_empty(stream_reader)])
        print("百度一下".encode("utf-8") in response)
    finally:
        # 关闭 writer
        stream_write.close()
        # 并等待它完成关闭
        await stream_write.wait_closed()

asyncio.run(main())
"""
True
"""

我们首先创建了一个简单的异步生成器从 StreamReader 读取所有行,直到没有任何剩余的数据要处理。然后在主协程中,打开一个到 baidu.com 的连接,在这个过程中创建一个 StreamReader 和 StreamWriter 实例。然后分别使用 write 和 drain 写入请求。一旦完成了写入请求,将使用异步生成器从响应中获取每一行数据,将它们存储在响应列表中,最后通过调用 close 关闭 StreamWriter 实例,然后等待 wait_closed 协程。为什么需要在这里调用一个方法和一个协程?原因是当调用 close 时会执行一些动作,例如取消注册套接字和底层传输调用 connection_lost 方法,这些都是在事件循环的后续迭代中异步发生的。这意味着在调用 close 之后,连接不会马上关闭,而是直到稍后的某个时间才会关闭。如果你需要等待连接关闭才能继续操作,或者担心关闭时可能发生的任何异常,最好调用 wait_closed。

然后再来聊一聊 StreamReader,它有以下几个协程方法:

  • read(self, n=-1):如果 n 为 -1,那么会一直读到 EOF 并返回已读取的所有内容。如果 n 大于 0,则读取指定的字节数并返回,如果不够那么有多少读多少;
  • readexactly(self, n):读取 n 个字节,数据不够 n 个字节,则返回 IncompleteReadError;
  • readline(self):从流中读取数据块,直到找到换行符 b"\\n"。如果成功,那么返回带有换行符的数据块。如果在遇到换行符之前先遇到了 EOF(响应结束了),那么直接返回读到的行;
  • readuntil(self, separator=b'\n'):读取数据,直到找到指定的分隔符 separator。readline 本质上也是调用了 readuntil,而且 readuntil 的 separator 的默认就是换行符,所以它默认等价于 readline,当然我们也可以指定为别的;

如果没有返回数据(直接读到了 EOF),那么这几个方法会返回空字节串(readexactly 特殊,字节不够会报错)。

现在通过发出 Web 请求了解了有关流 API 的基础知识,但这些类的用处超出了基于 Web 和网络的应用程序,接下来我们将了解如何利用流读取器来创建非阻塞命令行应用程序。

非阻塞命令行输入

一般情况下,在 Python 中要获取用户输入时,我们会使用 input 函数。该函数将会阻塞线程,直到用户提供输入并按下 Enter 键。但如果想在后合运行代码,同时保持对输入的响应呢?例如,我们可能想让用户同时启动多个长时间运行的任务,例如长时间运行的 SQL 查询。而对于命令行聊天应用程序,则可能希望用户能够在接收来自其他用户的消息时键入自己的消息。

由于 asyncio 是单线程的,在 asynio 应用程序中使用 input 意味着停止运行事件循环,直到用户提供输入内容,这将停止整个应用程序。即使使用任务在后台启动操作也行不通。为演示这一点,让我们尝试创建一个应用程序,用户输入应用程序的休眠时间。我们希望能够在接收用户输入的同时,一起运行多个这些休眠操作。

import asyncio

async def delay(seconds):
    print(f"休眠 {seconds} 秒")
    await asyncio.sleep(seconds)
    print(f"{seconds} 秒休眠完成")

async def main():
    while True:
        delay_time = input("请输入休眠时间: ")
        asyncio.create_task(delay(int(delay_time)))

asyncio.run(main())
"""
请输入休眠时间: 5
请输入休眠时间: 3
请输入休眠时间: 4
请输入休眠时间: 



"""

这个问题原因应该很容易理解,input 会阻塞整个线程,所以任务永远不执行。

我们真正想要的是将 input 函数改为协程,可以编写类似 words = await input() 的代码。如果能做到这一点,任务将正确调度,并在等待用户输入时继续运行。不幸的是,input 没有协程变体,所以需要使用其他技术来实现。 而这正是协议和流读取器可以帮助我们的地方,回顾一下,流读取器有 readline 协程方法,这是我们正在寻找的协程类型。如果有办法将流读取器连接到标准输入,就可以使这个协程实现用户输入。

asyncio 在事件循环上有一个名为 connect_read_pipe 的协程方法,它将协议连接到类似文件的对象,这与我们预想的几乎相同。这个协程方法接收一个协议工厂(protocol factory)和一个管道(pipe),协议工厂只是一个创建协议实例的函数,管道(pipe)是一个类似文件的对象,它被定义为一个对象,上面有读写等方法。connect_read_pipe 协程将管道连接到工厂创建的协议,从管道中获取数据,并将其发送到协议。

就标准控制台输入而言,sys.stdin 符合传递给 connect_read_pipe 的类文件对象的要求。一旦调用了这个协程,就会得到一个工厂函数创建的协议和一个 ReadTransport。现在的问题是我们应该在工厂中创建什么协议,以及如何将它和具有我们想要使用的 readline 协程的 StreamReader 连接起来?

asyncio 提供了一个名为 StreamReaderProtocol 的实用程序类,用于将流读取器的实例连接到协议。当实例化这个类时,我们传入一个流读取器的实例,然后协议类委托给我们创建的流读取器,允许使用流读取器从标准输入中读取数据。将所有这些内容放在一起,可创建一个在等待用户输入时,不会阻塞事件循环的命令行应用程序。

import asyncio
from asyncio import StreamReader
import sys

async def create_stdin_reader() -> StreamReader:
    stream_reader = asyncio.StreamReader()
    protocol = asyncio.StreamReaderProtocol(stream_reader)
    loop = asyncio.get_running_loop()
    await loop.connect_read_pipe(lambda: protocol, sys.stdin)
    return stream_reader

在代码中,我们创建了一个名为 create_stdin_reader 的可重用协程,它创建了个 StreamReader,我们将使用它来异步读取标准输入。首先创建一个流读取器实例并将其传递给流读取器协议,然后调用 connect_read_pipe,将协议工厂作为 lambda 函数传入。这个 lambda 函数会自动调用,并返回我们之前创建的流读取器协议,然后通过 sys.stdin 将标准输入连接到流读取器协议。并且 connect_read_pipe 会返回传输和协议,但当前不需要它们,因此忽略了。现在可以使用此函数从标准输入异步读取,并构建应用程序。

import asyncio
from asyncio import StreamReader
import sys

async def create_stdin_reader() -> StreamReader:
    stream_reader = asyncio.StreamReader()
    protocol = asyncio.StreamReaderProtocol(stream_reader)
    loop = asyncio.get_running_loop()
    await loop.connect_read_pipe(lambda: protocol, sys.stdin)
    return stream_reader

async def delay(seconds):
    print(f"休眠 {seconds} 秒")
    await asyncio.sleep(seconds)
    print(f"{seconds} 秒休眠完成")

async def main():
    stdin_reader = await create_stdin_reader()
    while True:
        delay_time = await stdin_reader.readline()
        asyncio.create_task(delay(int(delay_time)))

asyncio.run(main())
"""
10
休眠 10 秒
5
休眠 5 秒
1
休眠 1 秒
1 秒休眠完成
5 秒休眠完成
10 秒休眠完成



"""

在主协程中,调用 create_stdin_reader 并无限循环,等待来自具有 readline 协程的用户的输入。一旦用户在键盘上按下 Enter 键,这个协程就会传递输入的文本。当从用户那里得到输入的内容,就将它转换成一个整数并创建一个delay 任务。运行它,你将能在输入命令行的同时,运行多个 delay 任务。

但令人遗憾的是,在 Windows 系统上,connect_read_pipe 与 sys.stdin 不匹配。这是由于 Windows 实现文件描述符的方式导致的未修复错误,你可通过 https://bugs.python.org/issue26832 了解更多详细信息。

创建服务器

构建服务器时,我们创建了一个服务器套接字,将其绑定到一个端口并等待传入的连接。虽然这可行,但 asyncio 允许在更高的抽象级别上创建服务器,这意味着创建它们之后不用操心套接字的管理问题。以这种方式创建服务器简化了需要为使用套接字编写的代码,因此使用这些更高级别的 API 是使用 asyncio 创建和管理服务器的推荐方法。

可使用 asyncio.start_server 协程创建一个服务器,这个协程接收几个可选参数来配置诸如 SSL 的参数,但我们关注的主要参数是 host、port 和 client_connected_cb。host 和 port 就像我们之前看到的一样:服务器套接字监听的地址的端口,但有趣的部分是 client_connected_cb,它要么是一个回调函数,要么是一个在客户端连接到服务器时将运行的协程。此回调将 StreamReader 和 StreamWriter 作为参数,让我们可以读取和写入连接到服务器的客户端。

而 await start_server 时,它会返回一个 AbstractServer 对象,这是一个抽象类,调用它的 serve_forever 方法可以永远运行服务器,直到我们终止它。并且这个类也是一个异步上下文管理器,这意味着可使用带有 async with 语法的实例来让服务器在退出时正确关闭。

为了掌握如何创建服务器,让我们再次创建一个回显服务器,但要提供一些更高级的功能。除了回显输出,还将显示有多少其他客户端已连接到服务器,并且客户端和服务器断开连接时显示断开的客户端信息。

import asyncio
from asyncio import StreamReader, StreamWriter
import logging

class ServerState:

    def __init__(self):
        self._writers = []

    async def add_client(self, reader: StreamReader, writer: StreamWriter):
        """添加客户端,并创建回显任务"""
        self._writers.append(writer)
        await self._on_connect(writer)
        asyncio.create_task(self._echo(reader, writer))

    async def _on_connect(self, writer: StreamWriter):
        """当有新连接时,告诉客户端有多少用户在线,并同时其他人有新用户上线"""
        writer.write(f"欢迎, 当前在线人数有 {len(self._writers)} 人\n".encode("utf-8"))
        await writer.drain()
        await self._notify_all("新用户上线\n")

    async def _echo(self, reader: StreamReader, writer: StreamWriter):
        try:
            while (data := await reader.readline()) != b"":
                writer.write(data + b"~")
                await writer.drain()
            # 如果客户端断开连接,那么通知其他用户,有人断开连接
            self._writers.remove(writer)
            await self._notify_all(f"有人断开连接, 当前在线人数为 {len(self._writers)}")
        except ConnectionError:
            logging.info("客户端断开连接")
        except Exception as e:
            logging.error(f"出现异常: {e}")
            self._writers.remove(writer)

    async def _notify_all(self, message: str):
        """向所有其他用户发送消息的辅助方法, 如果发送失败, 将删除该用户"""
        for writer in self._writers:
            try:
                writer.write(message.encode("utf-8"))
                await writer.drain()
            except ConnectionError as e:
                logging.error("无法向客户端写入数据, 连接断开")
                self._writers.remove(writer)

async def main():
    server_state = ServerState()

    async def client_connected(reader: StreamReader, writer: StreamWriter):
        await server_state.add_client(reader, writer)
    # 当客户端连接时,会调用 client_connected 协程函数,并自动传入 reader 和 writer
    # 在里面我们执行 await server_state.add_client
    server = await asyncio.start_server(client_connected, "localhost", 9999)
    async with server:
        await server.serve_forever()

asyncio.run(main())

当用户连接到服务器时,client_connected 回调会响应该用户的读取器和写入器,进而调用 ServerState 实例的 add_client 协程。在 add_client 协程中存储了 StreamWriter,因此我们可以向所有连接的客户端发送消息,并在客户端断开连接时将其删除。然后语用 _on_connect,它会向客户端发送一条消息,通知有多少其他用户已连接。在 _on_connect 中,还通知其他所有已连接的客户端有新用户连接。

小结

在本篇文章中,我们学习了以下内容:

  • 使用较低级别的传输和协议 API 来构建一个简单的 HTTP 客户端,这些 API 是高级 asyncio stream API 的基础,不推荐用于一般用途;
  • 使用 StreamReader 和 StreamWriter 类来构建网络应用程序,这些更高级别的 API 是在 asyncio 中使用流的推荐方法;
  • 使用流来创建非阻塞命令行应用程序,这些应用程序可以在后台运行任务,并保持对用户输入的响应;
  • 使用 start_server 协程创建服务器,这种方法是在 asyncio 中创建服务器的推荐方法,而不是直接使用套接字;

标签:StreamWriter,协程,self,await,TCP,._,StreamReader,asyncio
From: https://www.cnblogs.com/traditional/p/17381757.html

相关文章

  • TCP系列01—概述及协议头格式
    目录 一、TCP简单介绍面向连接可靠性字节流式二、TCP的封装和协议头的格式三、TCP中的数据包窗口和滑窗一、TCP简单介绍connection-oriented)、可靠的(reliable)、字节流式(byte stream)传输协议, TCP的这三个特性该怎么理解呢?面向连接在应用TCP协议进行通信之前双方通常需要通......
  • asyncio.Semaphore
     asyncio.Semaphore是一个异步信号量,用于协调多个协程对共享资源的访问。异步信号量在协程中的使用方式与线程中的普通信号量类似,但是它是非阻塞的。当信号量的计数器为0时,协程将会被阻塞,直到其他协程释放了该信号量。 importasyncioasyncdefworker(semaphore):......
  • 《asyncio 系列》7. 在 asyncio 中引入多线程
    楔子在从头开始开发新的IO密集型应用程序时,asyncio可能是首选技术,并且也要使用与asyncio搭配工作的非阻塞库,如asyncpg、aiohttp等等。然而我们工作的很大一部分可能是使用阻塞IO库管理现有的代码,例如对HTTP发请求的requests,用于PostgreSQL数据库的psycopg2,或其他......
  • MPTCP(二):MPTCP版本说明
    MPTCP版本说明简介参考链接https://github.com/multipath-tcp/mptcp_net-next/wikiMPTCP的两个版本MPTCPv0:在5.6之前的linux内核版本中并未集成MPTCP相关的源码,需要开发者自行向内核中打入MPTCP的补丁以启用MPTCPMPTCPv1:在5.6及之后的内核版本中,已经集成了MP......
  • python asyncio
    例子importasyncioasyncdefmain():print("hello")awaitasyncio.sleep(1)print("world")asyncio.run(main())主要函数task=asyncio.create_tas()res=awaitasyncio.gather(task1,task2)#res:list获取返回值res=awaittask......
  • 第二章:用电信号传输TCP/IP数据-02-连接:connect()
    一、连接是什么意思话说网线一直插着,网络一直连着,网线中随时都有信号流过,那这个“连接”是连接什么呢?可以类比人与人之间的联系,满大街都是人,身边随时有人走过,我们算是跟任何人有联系吗?当然没有!怎么才算有联系?先要双方有交往意愿,然后互换个名片,这才算联系上了。哪天一方找到另......
  • TCP协议三次握手的原因是什么?为什么不用两次握手和4次握手?
    今天复习了TCP协议的三次握手,对上一篇C++网络编程有了更深的理解。当时考研的时候计网学过,这里再总结一下分享。网图都是截图来的,侵删。TCP协议属于传输层协议,上面的应用层协议包括HTTP、FTP之类,应用层协议是最接近用户的,每往下一层就套一层头部数据来提供给当前层协议解析。那......
  • CS144 计算机网络 Lab4:TCP Connection
    前言经过前面几个实验的铺垫,终于到了将他们组合起来的时候了。Lab4将实现TCPConnection功能,内部含有TCPReceiver和TCPSender,可以与TCP连接的另一个端点进行数据交换。实验要求简单来说,这次实验就是要在TCPConnection类中实现下图所示的有限状态机:这些状态对应T......
  • TCP/IP-2023-05-06
    1、图片来自:https://www.bunian.cn/3772.html 2、三次握手四次挥手见《TCP三次握手四次挥手-嵌入式Linux网络编程基础-麦子学院》的11:00开始的地方。【返回目录树】......
  • 《asyncio 系列》6. 在 asyncio 中引入多进程
    楔子到目前为止我们使用asyncio获得的性能提升,一直专注在并发运行IO密集型工作上面,当然运行IO密集型工作是asyncio的主要工作,并且按照目前编写代码的方式,需要注意不要在协程中运行任何的CPU密集型代码。但这似乎严重限制了asyncio的使用,因为这个库能做的事情不仅仅限......