一、基本用法
首先看 Profiler 的用法:
with ms.Profiler() as profiler:
# .... 用户代码
print("Tuning Time:")
print(profiler.table())
二、前端接口设计
其中 Profiler 类的设计是绑定和映射到了 C++ 端的接口上。Profile 提供了 Context 语义,支持 with 语句。
@register_object("meta_schedule.Profiler")
class Profiler(Object):
"""Tuning time profiler."""
def __init__(self) -> None:
self.__init_handle_by_constructor__(
_ffi_api.Profiler, # type: ignore # pylint: disable=no-member
)
def get(self) -> Dict[str, float]:
"""Get the profiling results in seconds"""
return _ffi_api.ProfilerGet(self) # type: ignore # pylint: disable=no-member
def table(self) -> str:
"""Get the profiling results in a table format"""
return _ffi_api.ProfilerTable(self) # type: ignore # pylint: disable=no-member
def __enter__(self) -> "Profiler":
"""Entering the scope of the context manager"""
_ffi_api.ProfilerEnterWithScope(self) # type: ignore # pylint: disable=no-member
return self
def __exit__(self, ptype, value, trace) -> None:
"""Exiting the scope of the context manager"""
_ffi_api.ProfilerExitWithScope(self) # type: ignore # pylint: disable=no-member
@staticmethod
def current() -> Optional["Profiler"]:
"""Get the current profiler."""
return _ffi_api.ProfilerCurrent() # type: ignore # pylint: disable=no-member
@staticmethod
def timeit(name: str):
"""Timeit a block of code"""
@contextmanager
def _timeit():
try:
f = _ffi_api.ProfilerTimedScope(name) # type: ignore # pylint: disable=no-member
yield
finally:
if f:
f()
return _timeit()
其中 enter 调用时会执行 ProfilerEnterWithScope
其负责往一个 Stack 式的结构中添加一个 Profiler 对象:
void Profiler::EnterWithScope() {
ThreadLocalProfilers()->push_back(*this);
(*this)->total_timer = ProfilerTimedScope("Total");
}
在退出 with 语句时,调用 exit 执行 ProfilerExitWithScope
会调用 ProfilerTimedScope()
对象返回的函数,触发当前层计时结束。
profiler.table()
负责收集所有的耗时统计信息,并按照预定义的格式 format 展示给用户。
// std::unordered_map<std::string, double> stats_sec; << 这家伙是被所有的Profiler共享的
// runtime::PackedFunc total_timer; << 负责外层的整体耗时计算
String ProfilerNode::Table() const {
CHECK(!stats_sec.empty()) << "ValueError: The stats are empty. Please run the profiler first.";
CHECK(stats_sec.count("Total"))
<< "ValueError: The total time is not recorded. This method should be called only after "
"exiting the profiler's with scope.";
double total = stats_sec.at("Total");
struct Entry {
String name;
double minutes;
double percentage;
bool operator<(const Entry& other) const { return percentage > other.percentage; }
};
std::vector<Entry> table_entry;
for (const auto& kv : stats_sec) {
table_entry.push_back(Entry{kv.first, kv.second / 60.0, kv.second / total * 100.0});
}
std::sort(table_entry.begin(), table_entry.end());
support::TablePrinter p;
p.Row() << "ID"
<< "Name"
<< "Time (min)"
<< "Percentage";
p.Separator();
for (int i = 0, n = table_entry.size(); i < n; ++i) {
if (i == 0) {
p.Row() << "" << table_entry[i].name << table_entry[i].minutes << table_entry[i].percentage;
} else {
p.Row() << i << table_entry[i].name << table_entry[i].minutes << table_entry[i].percentage;
}
}
p.Separator();
return p.AsStr();
}
三、后端接口设计
// TVM 框架中某个函数
void Apply(const TaskScheduler& task_scheduler, int task_id,
const Array<MeasureCandidate>& measure_candidates,
const Array<BuilderResult>& builder_results,
const Array<RunnerResult>& runner_results) final {
auto _ = Profiler::TimedScope("MeasureCallback/AddToDatabase"); // 构造时触发计时开始
// 框架代码
} // 出了函数的作用域,_ 对象会被析构,触发计时结束,计算duration,放到全局的table中
TimedScope的实现仅仅是返回了一个ScopedTimer对象,由ScopedTimer对象的析构函数负责触发「计时结束」。
ScopedTimer Profiler::TimedScope(String name) { return ScopedTimer(ProfilerTimedScope(name)); }
PackedFunc ProfilerTimedScope(String name) {
if (Optional<Profiler> opt_profiler = Profiler::Current()) { // <---- Profiler::Current()是一个「栈」设计,为了支持「嵌套统计」功能
return TypedPackedFunc<void()>([profiler = opt_profiler.value(), //
tik = std::chrono::high_resolution_clock::now(), // <--- 创建一个函数deleter回调函数,借助lambda函数传递计时起始点
name = std::move(name)]() {
auto tok = std::chrono::high_resolution_clock::now();
double duration =
std::chrono::duration_cast<std::chrono::nanoseconds>(tok - tik).count() / 1e9;
profiler->stats_sec[name] += duration; // <----
});
}
return nullptr;
}
TVM 中的 Profiler 是支持多重任意嵌套的,实现通过了一个 Vector<Profile>
模拟了栈了操作:
std::vector<Profiler>* ThreadLocalProfilers() {
static thread_local std::vector<Profiler> profilers; // <---- 支持嵌套,全局stack 结构
return &profilers;
}
void Profiler::EnterWithScope() {
ThreadLocalProfilers()->push_back(*this); // 入栈
(*this)->total_timer = ProfilerTimedScope("Total");
}
void Profiler::ExitWithScope() {
ThreadLocalProfilers()->pop_back(); // 出栈
if ((*this)->total_timer != nullptr) {
(*this)->total_timer();
(*this)->total_timer = nullptr;
}
}
附录:飞桨 Profiler 设计
一、基本用法
如下是一个简单的使用样例:
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
profiler.start_profiler('GPU') # <---- 开始记录
for iter in range(10):
if iter == 2:
profiler.reset_profiler()
# except each iteration
profiler.stop_profiler('total', '/tmp/profile') # <---- 结束并记录结果到文件里
"""
-------------------------> Profiling Report <-------------------------
Place: CPU
Time unit: ms
Sorted by total time in descending order in the same thread
#Sorted by number of calls in descending order in the same thread
#Sorted by number of max in descending order in the same thread
#Sorted by number of min in descending order in the same thread
#Sorted by number of avg in descending order in the same thread
Event Calls Total Min. Max. Ave. Ratio.
thread0::conv2d 8 129.406 0.304303 127.076 16.1758 0.983319
thread0::elementwise_add 8 2.11865 0.193486 0.525592 0.264832 0.016099
thread0::feed 8 0.076649 0.006834 0.024616 0.00958112 0.000582432
#### 2) sorted_key = None ####
# Since the profiling results are printed in the order of first end time of Ops,
# the printed order is feed->conv2d->elementwise_add
-------------------------> Profiling Report <-------------------------
Place: CPU
Time unit: ms
Sorted by event first end time in descending order in the same thread
Event Calls Total Min. Max. Ave. Ratio.
thread0::feed 8 0.077419 0.006608 0.023349 0.00967738 0.00775934
thread0::conv2d 8 7.93456 0.291385 5.63342 0.99182 0.795243
thread0::elementwise_add 8 1.96555 0.191884 0.518004 0.245693 0.196998
"""
二、前端接口设计
上面涉及到了两个核心的接口:start_profiler
和 stop_profiler
def start_profiler(state, tracer_option='Default'):
if state == "GPU":
prof_state = core.ProfilerState.kCUDA
# ......
if tracer_option == "Default":
prof_tracer_option = core.TracerOption.kDefault
# .....
core.set_tracer_option(prof_tracer_option)
core.enable_profiler(prof_state)
def stop_profiler(sorted_key=None, profile_path='/tmp/profile'):
core.disable_profiler(key_map[sorted_key], profile_path)
这两个接口内部实现都是通过「修改全局变量开关」来实现的,这些接口均通过 Pybind 映射到C++端:
static TracerOption g_tracer_option = TracerOption::kDefault; // 全局静态变量
void SetTracerOption(TracerOption option) {
std::lock_guard<std::mutex> l(profiler_mu);
g_tracer_option = option;
}
class ProfilerHelper {
public:
// The profiler state, the initial value is ProfilerState::kDisabled
static ProfilerState g_state;
// 省略
}
三、后端接口设计
C++ 端的主要用法:
LOG(INFO) << "Usage 2: RecordEvent";
for (int i = 1; i < 5; ++i) {
std::string name = "evs_op_" + std::to_string(i);
RecordEvent record_event(name);
int counter = 1;
while (counter != i * 1000) counter++;
}
可以看出提供的核心数据结构类是 RecordEvent
,也是借助对象的构造和析构来实现的。
// Default tracing level.
// It is Recommended to set the level explicitly.
static constexpr uint32_t kDefaultTraceLevel = 4;
class RecordEvent {
public:
static bool IsEnabled();
explicit RecordEvent(
const std::string& name,
const TracerEventType type = TracerEventType::UserDefined,
uint32_t level = kDefaultTraceLevel,
const EventRole role = EventRole::kOrdinary);
void End();
~RecordEvent() { End(); }
private:
std::string* name_{nullptr};
uint64_t start_ns_;
// 省略其他成员
}
可以看出构造时初始化 start_ns_成员,在析构时调用 End 函数:
void RecordEvent::End() {
uint64_t end_ns = PosixInNsec();
HostEventRecorder<CommonEvent>::GetInstance().RecordEvent(
shallow_copy_name_, start_ns_, end_ns, role_, type_);
}
从实现上看,框架层面所有的 Event 是保存到全局单例 HostEventRecorder
中的,包含了name、时间起点、终点、类型、角色:
template <typename EventType>
class HostEventRecorder {
public:
// singleton
static HostEventRecorder &GetInstance() {
static HostEventRecorder instance;
return instance;
}
标签:std,name,self,profiler,TVM,设计,Profiler,def
From: https://www.cnblogs.com/CocoML/p/17376080.html