首页 > 其他分享 >P4093[HEOI2016/TJOI2016]序列

P4093[HEOI2016/TJOI2016]序列

时间:2023-05-05 19:35:32浏览次数:42  
标签:ch int 样例 mid P4093 TJOI2016 HEOI2016 序列 变化

P4093[HEOI2016/TJOI2016]序列

目录

题目描述

佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他。

玩具上有一个数列,数列中某些项的值可能会变化,但同一个时刻最多只有一个值发生变化。现在佳媛姐姐已经研究出了所有变化的可能性,她想请教你,能否选出一个子序列,使得在任意一种变化中,这个子序列都是不降的?请你告诉她这个子序列的最长长度即可。

输入格式

输入的第一行有两个正整数 \(n,m\),分别表示序列的长度和变化的个数。

接下来一行有 \(n\) 个整数,表示这个数列原始的状态。

接下来 \(m\) 行,每行有 \(2\) 个整数 \(x,y\),表示数列的第 \(x\) 项可以变化成 \(y\) 这个值。

输出格式

输出一个整数,表示对应的答案。

样例 #1

样例输入 #1

3 4 
1 2 3 
1 2 
2 3 
2 1 
3 4

样例输出 #1

3

提示

注意:每种变化最多只有一个值发生变化。

在样例输入中,所有的变化是:

1 2 3
2 2 3
1 3 3
1 1 3
1 2 4

选择子序列为原序列,即在任意一种变化中均为不降子序列。

对于 \(20\%\) 数据,所有数均为正整数,且小于等于 \(300\)。

对于 \(50\%\) 数据,所有数字均为正整数,且小于等于 \(3000\)。

对于 \(100\%\) 数据,所有数字均为正整数,且小于等于 \(10^5\)。\(1\le x\le n\)。

题目大意

有一个序列以及它的 \(n\) 种不同的变化,每次变化可以把 \(a_x\) 变成 \(y\) 。

你需要找出一个序列,使得在任何一种变化中(可以不变化),这个序列保持不降。

题目问你这种满足这种要求的序列的最大长度是多少?

思路

我们可以处理出 \(Mx[i] , Mn[i]\) 表示在所有变化中 \(i\) 可以达到的最大值和最小值。

显然我们可以用 \(dp\) 来做这道题,转移方程:

\[f_i = \max(f_i , f_j) (i \leq j \and a_j \leq Mn_i \and Mx_j \leq a_i) \]

我们观察一下这个转移方程,发现这是一个 \(O(n ^ 2)\) 的方法吗,然后我们考虑用 CDQ分治 + 树状数组 维护

对于区间 \([l , r]\) ,

我们把 \([l , mid]\) 按照 \(Mx_i\) 升序排序,把区间 \([mid + 1 , r]\) 按照 \(a_i\) 升序排序

然后对于 \([mid + 1 , r]\) 用树状数组维护小于 \(Mn_i\) 的数就好了。

然后就发现我们把它转化成了三维偏序问题。

最后时间复杂度就变成了 \(O(n log_2 n)\) 可以通过。

code

#include <bits/stdc++.h>
#define fu(x , y , z) for(int x = y ; x <= z ; x ++)
#define fd(x , y , z) for(int x = y ; x >= z ; x --)
#define LL long long
using namespace std;
const int N = 1e5 + 5;
int tr[N] , f[N] , n , m , a[N] , ans , Mx[N] , Mn[N] , p[N];
int read () {
    int val = 0 , fu = 1;
    char ch = getchar ();
    while (ch < '0' || ch > '9') {
        if (ch == '-') fu = -1;
        ch = getchar ();
    }
    while (ch >= '0' && ch <= '9') {
        val = val * 10 + (ch - '0');
        ch = getchar ();
    }
    return val * fu;
}
bool cmp1 (int x , int y) { return Mx[x] < Mx[y]; }
bool cmp2 (int x , int y) { return a[x] < a[y]; }
int lowbit (int x) { return x & (-x); }
void Insert (int x , int y) {
    while (x <= n) {
        tr[x] = max (tr[x] , y);
        x += lowbit (x);
    }
}
int query (int x) {
    int sum = 0;
    while (x) {
        sum = max (sum , tr[x]);
        x -= lowbit (x);
    }
    return sum;
}
void Clear (int x) {
    while (x <= n) {
        tr[x] = 0;
        x += lowbit (x);
    }
}
void cdq (int l , int r) {
    if (l == r) {
        f[l] = max (f[l] , 1);
        return;
    }
    else {
        int mid = l + r >> 1;
        cdq (l , mid);
        fu (i , l , r) 
            p[i] = i;
        sort (p + l , p + mid + 1 , cmp1) , sort (p + mid + 1 , p + r + 1 , cmp2);
        int j = l;
        fu (i , mid + 1 , r) {
            while (j <= mid && Mx[p[j]] <= a[p[i]]) {
                Insert (a[p[j]] , f[p[j]]);
                j ++;
            }
            f[p[i]] = max (f[p[i]] , query (Mn[p[i]]) + 1);
        }
        fu (i , l , mid) {
            Clear (a[i]);
        }
        cdq (mid + 1 , r);
    }
}
int main () {
    n = read () , m = read ();
    fu (i , 1 , n) {
        a[i] = read ();
        Mx[i] = Mn[i] = a[i];
    }
    int x , y;
    fu (i , 1 , m) {
        x = read () , y = read ();
        Mx[x] = max (Mx[x] , y) , Mn[x] = min (Mn[x] , y);
    }
    cdq (1 , n);
    fu (i , 1 , n)
        ans = max (ans , f[i]);
    printf ("%d" , ans);
    return 0;
}

标签:ch,int,样例,mid,P4093,TJOI2016,HEOI2016,序列,变化
From: https://www.cnblogs.com/2020fengziyang/p/17375162.html

相关文章

  • P2824 [HEOI2016/TJOI2016]排序 题解
    题目传送门前言线段树好题!!!!咕咕了挺久的一道题目,很早之前就想写了,今天终于找了个时间A掉了。题意给定一个\(1\)到\(n\)的排列,有\(m\)次操作,分两种类型。1.0lr表示将下标在\([l,r]\)区间中的数升序排序。2.1lr表示将下标在\([l,r]\)区间中的数降序排序。给......
  • LibreOJ L2056 「TJOI / HEOI2016」序列
    https://loj.ac/p/2056CDQ优化DP模板?首先定义对于第\(x\)个数其可以变为的最小值为\(Min_x\),最大值为\(Max_x\),初始为\(M_x\)。因为最多只会变一次数,不难想到......
  • [HEOI2016/TJOI2016]排序
    https://www.luogu.com.cn/problem/P2824题解:仔细思考可以发现这道题与https://arc101.contest.atcoder.jp/tasks/arc101_b?lang=en是等价的。二分之后原问题就转化为了......
  • P2824 [HEOI2016/TJOI2016]排序
    P2824[HEOI2016/TJOI2016]排序题目大意这个难题是这样子的:给出一个\(1\)到\(n\)的排列,现在对这个排列序列进行\(m\)次局部排序,排序分为两种:0lr表示将区间\(......
  • 【HEOI2016_TJOI2016】排序(线段树分裂&合并)
    线段树分裂&合并入门题。对于每个单调段用一个权值线段树维护。一次操作相当于先对\(l,r\)所在的单调段的权值线段树分裂,然后再合并若干棵的权值线段树。线段树分裂和......
  • BZOJ 4551([Tjoi2016&Heoi2016]树-倒序并查集)
    Description在2016年,佳媛姐姐刚刚学习了树,非常开心。现在他想解决这样一个问题:给定一颗有根树(根为1),有以下两种操作:1.标记操作:对某个结点打上标记(在最开始,只有结点1有标记......