首页 > 其他分享 >IMU and GPS Fusion for Inertial Navigation Label: Research

IMU and GPS Fusion for Inertial Navigation Label: Research

时间:2023-05-03 16:35:45浏览次数:54  
标签:... Inertial Label filter Fusion imu IMU imuFs GPS

转载自IMU and GPS Fusion for Inertial Navigation

This example shows how you might build an IMU + GPS fusion algorithm suitable for unmanned aerial vehicles (UAVs) or quadcopters. This example uses accelerometers, gyroscopes, magnetometers, and GPS to determine orientation and position of a UAV.

此示例展示了如何构建适用于无人驾驶飞行器 (UAV) 或四轴飞行器的 IMU + GPS 融合算法。
此示例使用加速度计、陀螺仪、磁力计和 GPS 来确定 UAV 的方向和位置。

Simulation Setup

Set the sampling rates. In a typical system, the accelerometer and gyroscope run at relatively high sample rates. The complexity of processing data from those sensors in the fusion algorithm is relatively low. Conversely, the GPS, and in some cases the magnetometer, run at relatively low sample rates, and the complexity associated with processing them is high. In this fusion algorithm, the magnetometer and GPS samples are processed together at the same low rate, and the accelerometer and gyroscope samples are processed together at the same high rate. To simulate this configuration, the IMU (accelerometer, gyroscope, and magnetometer) are sampled at 160 Hz, and the GPS is sampled at 1 Hz. Only one out of every 160 samples of the magnetometer is given to the fusion algorithm, so in a real system the magnetometer could be sampled at a much lower rate. 设置采样率。 在典型系统中,加速度计和陀螺仪以相对较高的采样率运行。 在融合算法中处理来自这些传感器的数据的复杂性相对较低。 相反,GPS 以及某些情况下的磁力计以相对较低的采样率运行,并且与处理它们相关的复杂性很高。 在此融合算法中,磁力计和 GPS 样本以相同的低速率一起处理,加速度计和陀螺仪样本以相同的高速率一起处理。 为模拟此配置,IMU(加速度计、陀螺仪和磁力计)以 160 Hz 采样,GPS 以 1 Hz 采样。 每 160 个磁力计样本中只有一个提供给融合算法,因此在实际系统中,可以以低得多的速率对磁力计进行采样。
imuFs = 160;
gpsFs = 1;
 
% Define where on the Earth this simulated scenario takes place using the
% latitude, longitude and altitude.
refloc = [42.2825 -72.3430 53.0352];
 
 
% Validate that the |gpsFs| divides |imuFs|. This allows the sensor sample
% rates to be simulated using a nested for loop without complex sample rate
% matching.
 
imuSamplesPerGPS = (imuFs/gpsFs);
assert(imuSamplesPerGPS == fix(imuSamplesPerGPS), ...
'GPS sampling rate must be an integer factor of IMU sampling rate.');

Fusion Filter

Create the filter to fuse IMU + GPS measurements. The fusion filter uses an extended Kalman filter to track orientation (as a quaternion), velocity, position, sensor biases, and the geomagnetic vector. This insfilterMARG has a few methods to process sensor data, including predict, fusemag and fusegps. The predict method takes the accelerometer and gyroscope samples from the IMU as inputs. Call the predict method each time the accelerometer and gyroscope are sampled. This method predicts the states one time step ahead based on the accelerometer and gyroscope. The error covariance of the extended Kalman filter is updated here. The fusegps method takes GPS samples as input. This method updates the filter states based on GPS samples by computing a Kalman gain that weights the various sensor inputs according to their uncertainty. An error covariance is also updated here, this time using the Kalman gain as well. The fusemag method is similar but updates the states, Kalman gain, and error covariance based on the magnetometer samples. Though the insfilterMARG takes accelerometer and gyroscope samples as inputs, these are integrated to compute delta velocities and delta angles, respectively. The filter tracks the bias of the magnetometer and these integrated signals. 创建过滤器以融合 IMU + GPS 测量值。 融合滤波器使用扩展的卡尔曼滤波器来跟踪方向(作为四元数)、速度、位置、传感器偏差和地磁矢量。 这个insfilterMARG有几个处理传感器数据的方法,包括predict、fusemag和fusegps。 predict 方法将来自 IMU 的加速度计和陀螺仪样本作为输入。 每次对加速度计和陀螺仪进行采样时调用predict方法。 该方法基于加速度计和陀螺仪提前一步预测状态。 扩展卡尔曼滤波器的误差协方差在此处更新。 fusegps 方法将 GPS 样本作为输入。 该方法通过计算根据不确定性对各种传感器输入进行加权的卡尔曼增益,根据 GPS 样本更新滤波器状态。 误差协方差也在这里更新,这次也使用卡尔曼增益。 fusemag 方法类似,但基于磁力计样本更新状态、卡尔曼增益和误差协方差。 虽然 insfilterMARG 将加速度计和陀螺仪样本作为输入,但它们会被集成以分别计算增量速度和增量角度。 滤波器跟踪磁力计的偏差和这些积分信号。
fusionfilt = insfilterMARG;
fusionfilt.IMUSampleRate = imuFs;
fusionfilt.ReferenceLocation = refloc;

UAV Trajectory

This example uses a saved trajectory recorded from a UAV as the ground truth. This trajectory is fed to several sensor simulators to compute simulated accelerometer, gyroscope, magnetometer, and GPS data streams. 此示例使用从无人机记录的已保存轨迹作为地面实况。 该轨迹被馈送到多个传感器模拟器,以计算模拟的加速度计、陀螺仪、磁力计和 GPS 数据流。
% Load the "ground truth" UAV trajectory.
load LoggedQuadcopter.mat trajData;
trajOrient = trajData.Orientation;
trajVel = trajData.Velocity;
trajPos = trajData.Position;
trajAcc = trajData.Acceleration;
trajAngVel = trajData.AngularVelocity;
 
% Initialize the random number generator used in the simulation of sensor
% noise.
rng(1)

GPS Sensor

Set up the GPS at the specified sample rate and reference location. The other parameters control the nature of the noise in the output signal. 以指定的采样率和参考位置设置 GPS。 其他参数控制输出信号中噪声的性质。
gps = gpsSensor('UpdateRate', gpsFs);
gps.ReferenceLocation = refloc;
gps.DecayFactor = 0.5; % Random walk noise parameter
gps.HorizontalPositionAccuracy = 1.6;
gps.VerticalPositionAccuracy = 1.6;
gps.VelocityAccuracy = 0.1;

IMU Sensors

Typically, a UAV uses an integrated MARG sensor (Magnetic, Angular Rate, Gravity) for pose estimation. To model a MARG sensor, define an IMU sensor model containing an accelerometer, gyroscope, and magnetometer. In a real-world application the three sensors could come from a single integrated circuit or separate ones. The property values set here are typical for low-cost MEMS sensors. 通常,无人机使用集成的 MARG 传感器(磁力、角速度、重力)进行姿态估计。 要为 MARG 传感器建模,请定义一个包含加速度计、陀螺仪和磁力计的 IMU 传感器模型。 在实际应用中,三个传感器可以来自单个集成电路或独立的集成电路。 此处设置的属性值是典型的低成本 MEMS 传感器。
imu = imuSensor('accel-gyro-mag', 'SampleRate', imuFs);
imu.MagneticField = [19.5281 -5.0741 48.0067];
 
% Accelerometer
imu.Accelerometer.MeasurementRange = 19.6133;
imu.Accelerometer.Resolution = 0.0023928;
imu.Accelerometer.ConstantBias = 0.19;
imu.Accelerometer.NoiseDensity = 0.0012356;
 
% Gyroscope
imu.Gyroscope.MeasurementRange = deg2rad(250);
imu.Gyroscope.Resolution = deg2rad(0.0625);
imu.Gyroscope.ConstantBias = deg2rad(3.125);
imu.Gyroscope.AxesMisalignment = 1.5;
imu.Gyroscope.NoiseDensity = deg2rad(0.025);
 
% Magnetometer
imu.Magnetometer.MeasurementRange = 1000;
imu.Magnetometer.Resolution = 0.1;
imu.Magnetometer.ConstantBias = 100;
imu.Magnetometer.NoiseDensity = 0.3/ sqrt(50);

  

Initialize the State Vector of the insfilterMARG

The insfilterMARG tracks the pose states in a 22-element vector. The states are:insfilterMARG 跟踪 22 元素向量中的姿势状态。 这些状态是:
State Units State Vector Index
Orientation as a quaternion 1:4
Position (NED) m 5:7
Velocity (NED) m/s 8:10
Delta Angle Bias (XYZ) rad 11:13
Delta Velocity Bias (XYZ) m/s 14:16
Geomagnetic Field Vector (NED) uT 17:19
Magnetometer Bias (XYZ) uT 20:22
Ground truth is used to help initialize the filter states, so the filter converges to good answers quickly. Ground truth 用于帮助初始化过滤器状态,因此过滤器可以快速收敛到好的答案。
% Initialize the states of the filter
 
initstate = zeros(22,1);
initstate(1:4) = compact( meanrot(trajOrient(1:100)));
initstate(5:7) = mean( trajPos(1:100,:), 1);
initstate(8:10) = mean( trajVel(1:100,:), 1);
initstate(11:13) = imu.Gyroscope.ConstantBias./imuFs;
initstate(14:16) = imu.Accelerometer.ConstantBias./imuFs;
initstate(17:19) = imu.MagneticField;
initstate(20:22) = imu.Magnetometer.ConstantBias;
 
fusionfilt.State = initstate;

Initialize the Variances of the insfilterMARG

The insfilterMARG measurement noises describe how much noise is corrupting the sensor reading. These values are based on the imuSensor and gpsSensor parameters. The process noises describe how well the filter equations describe the state evolution. Process noises are determined empirically using parameter sweeping to jointly optimize position and orientation estimates from the filter.

insfilterMARG 测量噪声描述了有多少噪声破坏了传感器读数。 这些值基于 imuSensor 和 gpsSensor 参数。
过程噪声描述了滤波器方程描述状态演化的程度。 过程噪声是使用参数扫描根据经验确定的,以联合优化来自滤波器的位置和方向估计。

% Measurement noises
Rmag = 0.0862; % Magnetometer measurement noise
Rvel = 0.0051; % GPS Velocity measurement noise
Rpos = 5.169; % GPS Position measurement noise
 
% Process noises
fusionfilt.AccelerometerBiasNoise = 0.010716;
fusionfilt.AccelerometerNoise = 9.7785;
fusionfilt.GyroscopeBiasNoise = 1.3436e-14;
fusionfilt.GyroscopeNoise = 0.00016528;
fusionfilt.MagnetometerBiasNoise = 2.189e-11;
fusionfilt.GeomagneticVectorNoise = 7.67e-13;
 
% Initial error covariance
fusionfilt.StateCovariance = 1e-9*eye(22);

Initialize Scopes

The HelperScrollingPlotter scope enables plotting of variables over time. It is used here to track errors in pose. The HelperPoseViewer scope allows 3-D visualization of the filter estimate and ground truth pose. The scopes can slow the simulation. To disable a scope, set the corresponding logical variable to false. HelperScrollingPlotter 范围可以随时间绘制变量。 它在这里用于跟踪姿势中的错误。 HelperPoseViewer 示波器允许过滤器估计和地面实况姿态的 3-D 可视化。 示波器会减慢模拟速度。 要禁用范围,请将相应的逻辑变量设置为 false。
useErrScope = true; % Turn on the streaming error plot
usePoseView = true; % Turn on the 3-D pose viewer
 
if useErrScope
errscope = HelperScrollingPlotter(...
'NumInputs', 4, ...
'TimeSpan', 10, ...
'SampleRate', imuFs, ...
'YLabel', {'degrees', ...
'meters', ...
'meters', ...
'meters'}, ...
'Title', {'Quaternion Distance', ...
'Position X Error', ...
'Position Y Error', ...
'Position Z Error'}, ...
'YLimits', ...
[ -3, 3
-2, 2
-2 2
-2 2]);
end
 
if usePoseView
posescope = HelperPoseViewer(...
'XPositionLimits', [-15 15], ...
'YPositionLimits', [-15, 15], ...
'ZPositionLimits', [-10 10]);
end

Simulation Loop

The main simulation loop is a while loop with a nested for loop. The while loop executes at gpsFs, which is the GPS sample rate. The nested for loop executes at imuFs, which is the IMU sample rate. The scopes are updated at the IMU sample rate. 主要的模拟循环是一个带有嵌套 for 循环的 while 循环。 while 循环以 gpsFs 执行,这是 GPS 采样率。 嵌套的 for 循环以 imuFs 执行,这是 IMU 采样率。 示波器以 IMU 采样率更新。
% Loop setup - |trajData| has about 142 seconds of recorded data.
secondsToSimulate = 50; % simulate about 50 seconds
numsamples = secondsToSimulate*imuFs;
 
loopBound = floor(numsamples);
loopBound = floor(loopBound/imuFs)*imuFs; % ensure enough IMU Samples
 
% Log data for final metric computation.
pqorient = quaternion.zeros(loopBound,1);
pqpos = zeros(loopBound,3);
 
fcnt = 1;
 
while(fcnt <=loopBound)
% |predict| loop at IMU update frequency.
for ff=1:imuSamplesPerGPS
% Simulate the IMU data from the current pose.
[accel, gyro, mag] = imu(trajAcc(fcnt,:), trajAngVel(fcnt, :), ...
trajOrient(fcnt));
 
% Use the |predict| method to estimate the filter state based
% on the simulated accelerometer and gyroscope signals.
predict(fusionfilt, accel, gyro);
 
% Acquire the current estimate of the filter states.
[fusedPos, fusedOrient] = pose(fusionfilt);
 
% Save the position and orientation for post processing.
pqorient(fcnt) = fusedOrient;
pqpos(fcnt,:) = fusedPos;
 
% Compute the errors and plot.
if useErrScope
orientErr = rad2deg(dist(fusedOrient, ...
trajOrient(fcnt) ));
posErr = fusedPos - trajPos(fcnt,:);
errscope(orientErr, posErr(1), posErr(2), posErr(3));
end
 
% Update the pose viewer.
if usePoseView
posescope(pqpos(fcnt,:), pqorient(fcnt), trajPos(fcnt,:), ...
trajOrient(fcnt,:) );
end
fcnt = fcnt + 1;
end
 
% This next step happens at the GPS sample rate.
% Simulate the GPS output based on the current pose.
[lla, gpsvel] = gps( trajPos(fcnt,:), trajVel(fcnt,:) );
 
% Correct the filter states based on the GPS data and magnetic
% field measurements.
fusegps(fusionfilt, lla, Rpos, gpsvel, Rvel);
fusemag(fusionfilt, mag, Rmag);
 
end

 

        

Error Metric Computation

Position and orientation estimates were logged throughout the simulation. Now compute an end-to-end root mean squared error for both position and orientation. 在整个模拟过程中记录了位置和方向估计。 现在计算位置和方向的端到端均方根误差。 对于方向,四元数距离是减去具有不连续性的欧拉角的更好选择。 四元数距离可以用 |dist| 计算 函数,它给出以弧度为单位的方向角度差。 转换为度数以便在命令窗口中显示。
posd = pqpos(1:loopBound,:) - trajPos( 1:loopBound, :);
 
% For orientation, quaternion distance is a much better alternative to
% subtracting Euler angles, which have discontinuities. The quaternion
% distance can be computed with the |dist| function, which gives the
% angular difference in orientation in radians. Convert to degrees
% for display in the command window.
 
quatd = rad2deg(dist(pqorient(1:loopBound), trajOrient(1:loopBound)) );
 
% Display RMS errors in the command window.
fprintf('\n\nEnd-to-End Simulation Position RMS Error\n');
End-to-End Simulation Position RMS Error
msep = sqrt(mean(posd.^2));
fprintf('\tX: %.2f , Y: %.2f, Z: %.2f (meters)\n\n',msep(1), ...
msep(2), msep(3));
X: 0.50 , Y: 0.79, Z: 0.65 (meters)
 
fprintf('End-to-End Quaternion Distance RMS Error (degrees) \n');
End-to-End Quaternion Distance RMS Error (degrees)
fprintf('\t%.2f (degrees)\n\n', sqrt(mean(quatd.^2)));
1.45 (degrees)

Copyright 2017-2022 The MathWorks, Inc.

 

标签:...,Inertial,Label,filter,Fusion,imu,IMU,imuFs,GPS
From: https://www.cnblogs.com/radiumlrb/p/17369212.html

相关文章

  • multi-label问题的不同metrics评估指标对比
    【草稿】其中阴影方框代表分子,白色空白方框+阴影方框代表分子 其中Jaccard和F1比较容易出错。分析sklearn的jaccard_score如下:'''jaccard测试'''fromsklearn.metricsimportjaccard_score,f1_score,hamming_loss,accuracy_scoreimportnumpyasnpy_true=np.......
  • FAST-LIO:A Fast,Roust LiDAR-inertial Odometry Package by Tightly-Coupled Iterate
    摘要——本文提出一种计算高效、鲁棒的激光雷达惯性里程计框架。我们使用紧耦合的迭代扩展卡尔曼滤波器将激光雷达特征点与IMU数据融合,以允许在发生退化的快速运动、噪声或者杂乱环境中进行稳健导航。为了在出现大量观测情况下降低计算负载,我们提出了一个计算卡尔曼增益的新公式。......
  • stable-diffusion-webui 环境设置过程记录
    今天在自己的电脑上设置成功stable-diffusion-webui的环境,现记录一下过程,希望对其他人有用环境:Windows11显卡:NvidiaGeforceRTX3090时间:2023/04/301.主流程基本按照这篇知乎文章来的:喂饭级stable_diffusion_webUI使用教程-知乎(zhihu.com),这其中安装git,安装python3,都比......
  • 使用Dino+SAM+Stable diffusion 自动进行图片的修改
    SAM是Mata发布的“SegmentAnythingModel”可以准确识别和提取图像中的对象。它可以分割任何的图片,但是如果需要分割特定的物体,则需要需要点、框的特定提示才能准确分割图像。所以本文将介绍一种称为GroundingDino的技术来自动生成SAM进行分割所需的框。除了分割以外,我......
  • 第2讲,label
    Label是Tkinter的一个重要组件,它用于显示文本或图像。importtkinterasts#创建一个名为window的窗口window=ts.Tk();#设置窗口的标题window.title("测试lable")#窗口大小500x400,屏幕定位在300,300window.geometry("500x400+300+300")#创建标签label=ts.Label(......
  • Label。它的常用方法及其参数说明
    get():获取标签的文本内容。返回值为字符串类型。、my_label=Label(text='Hello,Kivy!')text=my_label.get()print(text)set(text):设置标签的文本内容。text参数为要设置的文本内容。my_label=Label()my_label.set('Hello,Kivy!')set_font_size(size):设置标......
  • rempe-2023-Trace and Pace: Controllable Pedestrian Animation via Guided Trajecto
    #TraceandPace:ControllablePedestrianAnimationviaGuidedTrajectoryDiffusion#paper1.paper-info1.1MetadataAuthor::[[DavisRempe]],[[ZhengyiLuo]],[[XueBinPeng]],[[YeYuan]],[[KrisKitani]],[[KarstenKreis]],[[SanjaFidler]],[[OrLi......
  • Deep-Learning-Based Spatio-Temporal-Spectral Integrated Fusion of Heterogeneous
    Deep-Learning-BasedSpatio-Temporal-SpectralIntegratedFusionofHeterogeneousRemoteSensingImagesabstract为了解决STF中的生成heterogeneousimages问题:为此,本文首次提出了一种基于新型深度残差循环生成对抗网络(GAN)的异构集成框架。所提出的网络由前向融合部......
  • Spatiotemporal Remote Sensing Image Fusion Using Multiscale Two-Stream Convoluti
    SpatiotemporalRemoteSensingImageFusionUsingMultiscaleTwo-StreamConvolutionalNeuralNetworksabstract地表反射率图像的渐变和突变是现有STF方法的主要挑战。(Gradualandabruptchangesinlandsurfacereflectanceimagesarethemainchallengesinexisting......
  • 基于容器平台 ACK 快速搭建 Stable Diffusion
    作者:子白本文介绍如何在阿里云容器平台ACK上快速搭建一套可对外提供服务的StableDiffusion。CPU版本前提条件已创建Kubernetes托管版集群。具体操作,请参见创建Kubernetes托管版集群[1]。......