首页 > 其他分享 >Mastering Regular Expressions(精通正则表达式) 阅读笔记:第一章,概念

Mastering Regular Expressions(精通正则表达式) 阅读笔记:第一章,概念

时间:2023-05-01 23:00:10浏览次数:40  
标签:Real 正则表达式 单词 Regular words Mastering Expressions

Real Scenario(现实场景)

Here's the scenario: you're given the job of checking the pages on a web server for doubled words (such as "this this"), a common problem with documents subject to heavy editing.

任务:检查文本中重复的单词(doubled words),比如 "this this"。

一些额外的要求:

  • 接受任意数量的文件;
  • 产生报告:包含文件名、行号、单词高亮;
  • 处理跨行的单词;
  • 忽略大小写;
  • 忽略 html 标签,如 <B>very</B> very。

Solving Real Problems(解决现实问题)

Knowing how to wield regular expressions unleashes processing powers you might not even know were available.

学会使用正则表达式可能为你带来前所未有的力量。

标签:Real,正则表达式,单词,Regular,words,Mastering,Expressions
From: https://www.cnblogs.com/revc/p/17086506.html

相关文章

  • AtCoder Regular Contest 122 D XOR Game
    洛谷传送门AtCoder传送门从高到低按位考虑。设当前位有\(k\)个\(1\)。如果\(k\bmod2=0\),这意味着Alice如果选了一个数,Bob可以选相同的数。发现可以分成\((0,0),(1,1)\)两组,递归下去即可。如果\(k\bmod2=1\),意味着答案这一位一定是\(1\)(因为无论如何都不......
  • AtCoder Regular Contest 119 E Pancakes
    洛谷传送门AtCoder传送门感觉挺典的,为啥有2500啊(观察发现,反转序列对\(\sum\limits_{i=1}^{n-1}|a'_i-a'_{i+1}|\)影响不大。具体而言,设反转了\(a_l\sima_r\),记\(s=\sum\limits_{i=1}^{n-1}|a_i-a_{i+1}|\),那么\(s'=s-|a_{l-1}-a_l|-|a_r-a_{r+1}|......
  • AtCoder Regular Contest 117 D Miracle Tree
    洛谷传送门AtCoder传送门第一步就没想到可以考虑化简限制。设所有点按\(E_i\)从小到大排序后顺序是\(p_1,p_2,...,p_n\)。发现只需满足\(E_{p_{i+1}}-E_{p_i}\ge\operatorname{dis}(p_i,p_{i+1})\)。证明是对于任意\(i<j<k\),若\(p_i,p_j\)和\(p_j,p_k\)均满......
  • AtCoder Regular Contest 116 F Deque Game
    洛谷传送门AtCoder传送门很强的博弈+性质题。下文令A为Takahashi,B为Aoki。发现单独考虑一个序列\(a_1,a_2,...,a_n\):若\(n\bmod2=0\):若A为先手,答案为\(\max(a_{\frac{n}{2}},a_{\frac{n}{2}+1})\);若B为先手,答案为\(\min(a_{\frac{n}{2}},a_{\frac......
  • AtCoder Regular Contest 123 E Training
    洛谷传送门AtCoder传送门不妨假设\(B_X\leB_Y\)。设\(f(x)=A_X+\frac{x}{B_X},g(x)=A_Y+\frac{x}{B_Y},F(x)=\left\lfloor{f(x)}\right\rfloor,G(x)=\left\lfloor{g(x)}\right\rfloor\),题目即求\(\sum\limits_{x=1}^n[F(x)=G(x)]\)。我一开始尝试化简......
  • AtCoder Regular Contest 126 E Infinite Operations
    洛谷传送门AtCoder传送门算是对这篇博客的补充吧。设\(a_1\lea_2\le\cdots\lea_n\)。发现最优操作中一定是对相邻的数进行操作,因为如果\(a_j\)想把\(x\)给\(a_i\)(\(i<j\)),最优是依次操作\((j-1,j,x),(j-2,j-1,x),...,(i,i+1,x)\)。这样\(x\)就能造成\((j-i)......
  • AtCoder Regular Contest 112 F Die Siedler
    洛谷传送门AtCoder传送门感觉太人类智慧了。设\(A=(c_1,c_2,...,c_n)\)表示当前每种牌的数量,\(f(A)\)为状态\(A\)只进行换牌操作最终最少剩下几张牌。\(f(A)\)是可以贪心求出的,因为策略必然是能换则换。并且我们发现依次换\(2,3,...,n,1\),最后\(c_2\simc_n\)都......
  • Linux shell regular expression All In One
    LinuxshellregularexpressionAllInOneLinuxshell正则表达式demos(......
  • AtCoder Regular Contest 123 C 1, 2, 3 - Decomposition
    洛谷传送门AtCoder传送门从低位往高位考虑。设当前个位为\(k\),暴力搜索这一位向上进\(i\)位,设\(\left\lfloor\frac{n}{10}\right\rfloor-i\)的答案为\(t\)。若\(t>10i+k\)显然就不可行,因为就算个位全部填\(1\)也不能补齐;否则\(n\)的答案就是\(\max(t,\l......
  • AtCoder Regular Contest 120 F Wine Thief
    洛谷传送门AtCoder传送门Hint如果是一个环怎么做?Answer由于是一个环,因此环上每个点对最终答案造成的贡献都相同。设$f_{i,j}$为长度为$i$的序列选$j$个不相邻的点的方案数,则$f_{i,j}=\binom{i-j+1}{j}$。应该很好理解,考虑一个长度为$i-j+1$的链,链头、链尾和两......