首页 > 其他分享 >INFS7450社会介质分析

INFS7450社会介质分析

时间:2023-04-29 12:44:43浏览次数:34  
标签:分析 code 介质 results will INFS7450 Facebook marks your


INFS7450 Social Media Analytics
Project 1 – Fast Computation of User Centrality Measures
Semester 1, 2023
Marks: 15 marks (15%)
Submission Due: 20 Apr 2023 16:00 (Brisbane Time)
Deliverables: See deliverables part
How to submit: Electronic submission via Blackboard
Goal: This project aims to implement a number of efficient algorithms to compute various
centrality measures for user nodes such as PageRank and Betweenness. Students are required to
finish this project individually.
Dataset: In this project, you will be working with publicly available Facebook social network data.
The Facebook data has been anonymized by replacing the Facebook-internal ids for each user with
a new value. The data contains 4039 nodes, and 88234 edges in total. Each line of the data
represents an undirected link starting from one node to another.
The dataset is available from UQ blackboard. See /Assessment/INFS7450 Project One.
Tasks:
1. Calculate the Betweenness Centrality for nodes in the Facebook dataset. (8 marks)
Overview: write code to load the Facebook social network data and construct an undirected
and unweighted graph. Based on the constructed graph, you are required to write a program
to calculate the betweenness centralities for the graph vertices.
Input: The provided Facebook social network data.
Output: The top-10 nodes with the highest betweenness centralities.
2. Calculate PageRank Centrality for nodes in the Facebook dataset. (7 marks)
Overview: write code to load the Facebook social network data and construct an undirected
and unweighted graph. Based on the constructed graph, you are required to write a program
to calculate the PageRank (with =0.85, =0.15) centralities for the graph vertices.
Input: The provided Facebook social network data.
Output: The top-10 nodes with the highest PageRank centralities.
Requirements:
1. You may use third-party libraries, such as NetworkX to read, load and manipulate the
Facebook network dataset. However, you must write your own code to implement the
function of node centrality calculation rather than using the third-part or built-in
functions. (You can use any functions in NetworkX other than the functions for centrality
calculation.)
2. You are not allowed to use any generative models such as ChatGPT.
3. You can refer to the codes provided in the tutorial, but are not allowed to directly reuse or
copy them.
4. You are not allowed to look at the code of any other student. All submitted codes and
reports will be subject to electronic plagiarism.
Programming Languages:
Python and NetworkX are recommended. However, you have your own choices of
preferred programming languages including, but not limited to, Python, MATLAB, Java,
C, C++, etc.
Deliverables (!!VERY IMPORTANT):
1. A report (.pdf). See the given appendix for an example template.
Submit your report in the PDF format, not in the word format!
2. A source code file. For python users, organize your code in this way:
Figure 1. the example of your submitted source code
If you are using other programming languages, please organize your code in one file,
and let me know how to run your code only via a simple click.
Only submit the source code in one file, don’t submit the data file.
3. A result text file. The file must contain two lines of results. The first line is the top-10
nodes with the highest betweenness centralities. The second line is the top-10 nodes with
the highest PageRank centralities. (each node id in each line should be separated by a
space.) See the following picture as an example.
Figure 2. the example format of the results
Don’t change the format! Your result file will be checked and marked via a script. If
you change the format, your submitted results will not be accepted. Keep in mind
the first line is the results of task 1 and the second line is the results of the task.
Don’t mix the order.
Don’t use other delimiters, only use a space.
Only report the top-10 node ids, don’t fill in with node centrality scores!
4. Name all the submitted files by your student ID. For example, 41234567.py for the
source code, 41234567.txt for your submitted results, and 41234567.pdf for your report.
5. Submit one archive file with your student number as the file name (e.g.12345678.zip)
with all the files mentioned above.
For example:
A student (with id 1234567) can submit his project as follows:
1234567.zip/
-------1234567.py
-------1234567.txt
-------1234567.pdf
Any submitted project which doesn’t follow the above guidelines will be desk
rejected without marking, which means you will get zero marks for the
corresponding parts.
Marking criteria (Total marks: 15):
• Task 1: 8 marks = 3 marks (code) + 3 marks (results) + 2 marks (report)
• Task 2: 7 marks = 2 marks (code) + 3 marks (results) + 2 marks (report)
• Your results should be reproducible and your codes should be readable. If your codes
cannot be executed or generate the results as reported, the corresponding marks for the
code and results will be deducted.
• We will evaluate your submitted results by calculating the Jaccard Similarity between
the submitted results and the ground truth. That means your mark for each task will be
calculated by:
Result Mark = Jaccard Similarity (Submitted Results, Ground Truth) * 3
Kaggle:
We will be deploying our projects on the Kaggle platform. Students are encouraged to
upload their results to Kaggle and compete with other classmates.
You can join the Kaggle competition via the below links:
https://www.kaggle.com/t/07e5043312114a88a84865a8e27f9563
Please note that the scores on this platform will not be considered in the final grading.
The final score will still be determined by the results you upload to Blackboard.

WX:codehelp

标签:分析,code,介质,results,will,INFS7450,Facebook,marks,your
From: https://www.cnblogs.com/mondayw/p/17363811.html

相关文章

  • iOS MachineLearning 系列(4)—— 静态图像分析之物体识别与分类
    iOSMachineLearning系列(4)——静态图像分析之物体识别与分类本系列的前几篇文件,详细了介绍了Vision框架中关于静态图片区域识别的内容。本篇文章,我们将着重介绍静态图片中物体的识别与分类。物体识别和分类也是MachineLearning领域重要的应用。通过大量的图片数据进行训练后,模型......
  • chatGTP对webpack4与webpack5的区别的分析
    chatGTP对webpack4与webpack5的区别的分析问1:webpack5与webpack4主要的区别是什么?chatGTP的回答Webpack5与Webpack4的主要区别如下:性能优化:Webpack5在构建速度和性能方面进行了大量的优化,从而可以更快地构建应用程序和库。TreeShaking:Webpack5对TreeShaking进行了改进......
  • 求导工具和语法分析
    最近想用编译原理的思想和现代化类库来重构我大一写的函数求导器仓库思想&语法在这里函数是真正的一等公民变量的本质是数学函数编程层面的函数需要引入多元函数,但是没必要复杂的数据结构诸如链表,数组在这里是不存在的。如果需要存在,那么借鉴图灵机的做法,将用一个数字来显......
  • 示波器数据导入MATLAB进行FFT分析的方法
      http://blog.sina.com.cn/s/blog_710421fa0101crm1.htmlpower_fftscope;示波器保存为.csv格式文件,然后用matlab导入新建.mdl模型文件,示波器里面变量保存为uuuu.time=seconduu.signals.values=Volt在工作台运行上面两条指令,直到FFT分析几面里面出现波形,就可以分析了!1......
  • python用支持向量机回归(SVR)模型分析用电量预测电力消费|附代码数据
    全文链接:http://tecdat.cn/?p=23921最近我们被客户要求撰写关于SVR的研究报告,包括一些图形和统计输出。本文描述了训练支持向量回归模型的过程,该模型用于预测基于几个天气变量、一天中的某个小时、以及这一天是周末/假日/在家工作日还是普通工作日的用电量关于支持向量机的快速......
  • 做BI财务数据分析,国产BI软件经验更足
    不管是为了提高销售额,还是为了提高库存周转、疏通现金流,都离不开数据分析,特别是BI大数据分析可视化。因此这几年来BI软件在各行各业的接受度迅速提升,特别是在财务数据分析方面,国产BI软件更是经验、技术到位。要说做中国企业的BI财务数据分析,国产BI软件的经验比谁都足。1、国产BI软......
  • Spring源码分析之BeanFactory
    概述以XmlBeanFactory为例分析Xml描述的Bean被Reasource加载到内存,先解析为Document对象,再解析为BeanDefinition注册到BeanDefinitionRegistry,再通过BeanFactory创建名词解释Resource是Spring对资源的抽象,主要是用来读取文件输入流Document是java本身的API进行解析的,得到......
  • blockimgdiff中方法分析01
    https://blog.csdn.net/Android_2016/article/details/98947824 关于blockimgdiff文件,本篇文档将详细分析初步生成transfer对象和生成diff的字典,并对几个重要方法进行解析.一、传入blockimgdiff的参数分析二、blockimgdiff中方法分析 一、传入blockimgdiff的参数分析......
  • 深度分析:全球千亿美元市值IT企业榜单及点评
    CNET科技资讯网7月3日CWEEK/每周电脑报特稿(文/蒋湘辉):2008年6月不仅是中国股市大幅下滑的一月,全球资本市场上的表现也很不乐观,IT大企业更是如此。和2008年5月30日的市值相比,6月30日市值1000亿美元以上的IT企业没有一家上涨。有4家在5月30日市值超过1000亿美元的IT企业在6月30的......
  • 某app请求参数分析
    前言这篇的前言有点冗长了,赶时间的朋友可以直接跳过。 记得还在读大学的时候,我就开始在网上到处找网络安全相关的知识,吾爱破解,看雪,飘云阁,hack80,i春秋,seebug,知道创宇,补天网啥的,要找个东西,能想到的平台都去搜,找到的虽然基本都很老的东西,但是对于小白的我来说,是真的有用,尤其是i春......