写在前面
笔者做这项工作的目的是希望为课题组寻找毫米波雷达+智慧驾驶领域寻找可行的趋势与方向,尽可能贴近工业界需求。在这项工作中,笔者总结了以多级联、集成芯片、级联+虚拟孔径成像为代表方案的国内外相关公司,由于信息繁冗、时间紧张,笔者在本报告中尽可能体现了相关公司的有用信息,以期待为业界提供一份参考。
正文内容
为充分利用毫米波雷达的信息量,前端感知能力与后端感知能力的统筹兼顾与提升事关重要。目前来看,前端感知能力提升主要依靠稀疏布阵和动态波形配置实现,后端感知能力主要依靠超轻量CFAR/DOA算法提升为主。在后端感知能力中,不难关注到压缩感知算法(行易道的LISTA、雷神投资的NPS的原子范数概念)等均可能为DOA线谱估计等提供高精度重构方案,以实现毫米波雷达的真正“成像”,但就目前主流解决方案(DSP出点云、MCU实现跟踪级别+下游任务管理)而言,压缩感知的落地依旧是“难于上青天”。
废话不多说,为了减少打字,下面就主要通过笔者整理的PPT来展示相关行研报告。