首页 > 其他分享 >线性SVM决策过程的可视化

线性SVM决策过程的可视化

时间:2023-04-23 22:59:59浏览次数:40  
标签:SVM xlim 30 np plt 可视化 线性 ax ylim

线性 SVM 决策过程的可视化

导入模块

from sklearn.datasets import make_blobs
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import numpy as np

实例化数据集,可视化数据集

x, y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.5)
# plt.scatter(x[:, 0], x[:, 1], c=y, cmap="rainbow")
# plt.xticks([])
# plt.yticks([])

画决策边界

# 首先要有散点图
plt.scatter(x[:, 0], x[:, 1], c=y, s=50, cmap="rainbow")
# 获取当前的子图,如果不存在,则创建新的子图
ax = plt.gca()

# 获取平面上两条坐标轴的最大值和最小值
xlim = ax.get_xlim()  # (-0.46507821433712176, 3.1616962549275827)
ylim = ax.get_ylim()  # (-0.22771027454251097, 5.541407658378895)

# 在最大值和最小值之间形成30个规律的数据
axisx = np.linspace(xlim[0], xlim[1], 30)  # shape(30,)
axisy = np.linspace(ylim[0], ylim[1], 30)  # shape(30,)

# 将axis(x, y)转换成二维数组
axisx, axisy = np.meshgrid(axisx, axisy)  # axisx, axisy = shape((30, 30)

# 将axisx, axisy 组成 900 * 2 的数组
xy = np.vstack([axisx.ravel(), axisy.ravel()]).T  # shape(900, 2)

# 展示xy画出的网格图
# plt.scatter(xy[:, 0], xy[:, 1], s=1, c="grey", alpha=0.3)


建模,计算决策边界并找出网格上每个点到决策边界的距离

# 建模,通过fit计算出对应的决策边界
clf = SVC(kernel="linear").fit(x, y)

# 重要接口decision_function,返回每个输入的样本所对应的到决策边界的距离
z = clf.decision_function(xy).reshape(axisx.shape)  # shape(30, 30)

plt.scatter(x[:, 0], x[:, 1], c=y, s=50, cmap="rainbow")
ax = plt.gca()

# 画决策边界和平行于决策边界的超平面
ax.contour(
    axisx,
    axisy,
    z,
    colors="k",
    levels=[-1, 0, 1],
    linestyles=["--", "-", "--"],
    alpha=0.5,
)

# 设置xyk刻度
ax.set_xlim(xlim)
ax.set_ylim(ylim)
(-0.22771027454251097, 5.541407658378895)


将绘图过程包装成函数

# 将上述过程包装成函数:
def plot_svc_decision_function(model: SVC, ax=None):
    """画出线性数据中策边界和平行于决策边界的超平面

    Args:
        model (SVC): 模型
        ax (_type_, optional): 子图. Defaults to None.
    """
    if ax is None:
        ax = plt.gca()  # 获取子图或新建子图
    xlim = ax.get_xlim()  # 获取子图x轴最大值和最小值
    ylim = ax.get_ylim()  # 获取子图y轴最大值和最小值

    # 在最大值和最小值之间形成30个规律的数据
    x = np.linspace(xlim[0], xlim[1], 30)
    y = np.linspace(ylim[0], ylim[1], 30)

    # 将x,y转换成x^2, y^2的二维数组
    Y, X = np.meshgrid(y, x)
    # 组成 xy * 2 的数组
    xy = np.vstack([X.ravel(), Y.ravel()]).T
    # 获取每个输入的样本所对应的到决策边界的距离
    P = model.decision_function(xy).reshape(X.shape)

    # 画图
    ax.contour(
        X, Y, P, colors="k", levels=[-1, 0, 1], alpha=0.5, linestyles=["--", "-", "--"]
    )
    ax.set_xlim(xlim)
    ax.set_ylim(ylim)
clf = SVC(kernel="linear").fit(x, y)
plt.scatter(x[:, 0], x[:, 1], s=50, cmap="rainbow", c=y)
plot_svc_decision_function(clf)


# 测试
x1, y1 = make_blobs(n_samples=500, centers=2, cluster_std=0.9)
clf1 = SVC(kernel="linear").fit(x1, y1)
plt.scatter(x1[:, 0], x1[:, 1], c=y1, s=25, cmap="rainbow")
plot_svc_decision_function(clf1)


探索模型

# 根据决策边界,对X中的样本进行分类,返回的结构为n_samples
clf.predict(x)
array([1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1,
       1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1,
       0, 1, 1, 0, 1, 0])
# 返回给定测试数据和标签的平均准确度
clf.score(x, y)
1.0
# 返回支持向量
clf.support_vectors_
array([[0.5323772 , 3.31338909],
       [2.11114739, 3.57660449],
       [2.06051753, 1.79059891]])
# 返回每个类中支持向量的个数
clf.n_support_
array([2, 1], dtype=int32)

推广到非线性情况

from sklearn.datasets import make_circles

x, y = make_circles(n_samples=300, factor=0.1, noise=0.1)
# x.shape(300, 2)
# y.shape(300,)

plt.scatter(x[:, 0], x[:, 1], c=y, s=50, cmap="rainbow")
plt.show()


# 测试plot_svc_decision_function
clf = SVC(kernel="linear").fit(x, y)
plt.scatter(x[:, 0], x[:, 1], s=50, cmap="rainbow", c=y)
plot_svc_decision_function(clf)
clf.score(x, y)
0.6733333333333333


为非线性数据增加维度并绘制 3D 图像

r = np.exp(-(x**2).sum(1))  # r.shape(300,)
rlim = np.linspace(min(r), max(r), 100)
from mpl_toolkits import mplot3d


# 定义一个绘制三维图像的函数
# elev表示上下旋转的角度
# azim表示平行旋转的角度
def plot_3D(elev=30, azim=30, x=x, y=y):
    ax = plt.subplot(projection="3d")
    ax.scatter3D(x[:, 0], x[:, 1], r, c=y, s=50, cmap="rainbow")
    ax.view_init(elev=elev, azim=azim)
    ax.set_xlabel("x")
    ax.set_ylabel("y")
    ax.set_zlabel("r")
    plt.show()


plot_3D()


将上述过程放到 Jupyter Notebook 中运行

# 如果放到jupyter notebook中运行
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_circles

X, y = make_circles(100, factor=0.1, noise=0.1)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap="rainbow")


def plot_svc_decision_function(model, ax=None):
    if ax is None:
        ax = plt.gca()
    xlim = ax.get_xlim()
    ylim = ax.get_ylim()
    x = np.linspace(xlim[0], xlim[1], 30)
    y = np.linspace(ylim[0], ylim[1], 30)
    Y, X = np.meshgrid(y, x)
    xy = np.vstack([X.ravel(), Y.ravel()]).T
    P = model.decision_function(xy).reshape(X.shape)
    ax.contour(
        X, Y, P, colors="k", levels=[-1, 0, 1], alpha=0.5, linestyles=["--", "-", "--"]
    )
    ax.set_xlim(xlim)
    ax.set_ylim(ylim)


clf = SVC(kernel="linear").fit(X, y)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap="rainbow")
plot_svc_decision_function(clf)
r = np.exp(-(X**2).sum(1))
rlim = np.linspace(min(r), max(r), 100)
from mpl_toolkits import mplot3d


def plot_3D(elev=30, azim=30, X=X, y=y):
    ax = plt.subplot(projection="3d")
    ax.scatter3D(X[:, 0], X[:, 1], r, c=y, s=50, cmap="rainbow")
    ax.view_init(elev=elev, azim=azim)
    ax.set_xlabel("x")
    ax.set_ylabel("y")
    ax.set_zlabel("r")
    plt.show()


from ipywidgets import interact, fixed

interact(plot_3D, elev=[0, 30], azip=(-180, 180), X=fixed(X), y=fixed(y))
plt.show()


interactive(children=(Dropdown(description='elev', index=1, options=(0, 30), value=30), IntSlider(value=30, de…

标签:SVM,xlim,30,np,plt,可视化,线性,ax,ylim
From: https://www.cnblogs.com/thankcat/p/17348021.html

相关文章

  • 数组的复制、反转、线性查找、二分查找
    publicclassArrayTest2{ publicstaticvoidmain(String[]args){ String[]arr=newString[]{"JJ","DD","MM","BB","GG","AA"}; //数组的复制(区别于数组变量的赋值:arr1=arr) String[]arr1=new......
  • 【开源项目】无锡~超经典智慧城市智慧无锡 CIM/BIM数字孪生可视化项目——开源工程及
    智慧无锡免费提供工程和源码,为城市管理和发展提供更智能化的解决方案。项目介绍智慧无锡项目利用数字孪生技术,将无锡市的地理信息、公共数据和实时监测数据进行整合,以数字化形式呈现城市的各种信息和场景。在工程中,利用AI处理地形影像,在溪梁区使用高精度的max模型,其他区域使用AI生......
  • 低代码感觉很能打——可视化搭建系统,把格局做大!
    有人说「可视化搭建系统」说到底只是重复造轮子产生的玩具;有人说「可视化搭建系统」本质是组件枚举,毫无意义。片面的认知必有其产生的道理,但我们不妨从更高的角度出发,并真切落地实践,也许你会发现:我们能做的事情还有更多。我对低代码的理解低代码开发,是一种开发模式,通过图形......
  • 可视化大屏的终极解决方案居然这么简单,vue-autofit一行全搞定!
    可视化大屏适配/自适应现状可视化大屏的适配是一个老生常谈的话题了,现在其实不乏一些大佬开源的自适应插件、工具但是我为什么还要重复造轮子呢?因为目前市面上适配工具每一个都无法做到完美的效果,做出来的东西都差不多,最终实现效果都逃不出白边的手掌心,可以解决白边问题的,要么太......
  • 手把手教你用Python打造一款批量下载视频并能可视化显示下载进度的下载器
    今日鸡汤桃之夭夭,灼灼其华。/1前言/    平时宅在家的我们最爱做的事莫过于追剧了,但是有时候了,网络原因,可能会让你无网可上。这个时候那些好看的电视剧和电影自然是无法观看了,本期我们要讲的就是怎样下载这些视频。/2项目目标/    通过Python程序对所感兴趣的视频进行批量......
  • R语言随机森林RandomForest、逻辑回归Logisitc预测心脏病数据和可视化分析|附代码数据
    全文链接:http://tecdat.cn/?p=22596最近我们被客户要求撰写关于预测心脏病的研究报告,包括一些图形和统计输出。本报告是对心脏研究的机器学习/数据科学调查分析。更具体地说,我们的目标是在心脏研究的数据集上建立一些预测模型,并建立探索性和建模方法。但什么是心脏研究?研究大纲......
  • 深度学习--可视化、过拟合
    深度学习--可视化、过拟合cmd运行命令:python-evisdom.server用法:fromvisdomimportVisdomviz=Visdom()viz.line([0.],[0.],win='train_loss',opts=dict(title='trainloss'))viz.line([loss.item()],[global_step],win='train_loss',update=�......
  • 扎实打牢数据结构算法根基,从此不怕算法面试系列之002 week01 02-02 线性查找法
    1、线性查找法什么是线性查找法?举例:在一沓试卷中,找到属于自己的那张试卷。第1张:不是第2张:不是第3张:不是……第n张:是,找到了!第n+1张:不找了……这个解决问题的思路和过程体现就是线性查找法的思想。2、线性查找法思路梳理线性查找法,就是在线性的数据结构中来完成。例如:在data数......
  • 扎实打牢数据结构算法根基,从此不怕算法面试系列之003 week01 02-03 代码实现线性查找
    1、算法描述在数组中逐个查找元素,即遍历。2、思路原理如算法描述,基本是最简单的代码块了,没有什么额外的原理。3、初步的代码实现线性查找法初步的代码实现:packagecom.mosesmin.datastructure.week01.chap02;/***@Misson&Goal代码以交朋友、传福音*@ClassNameLinearSearc......
  • 基于smo算法的数据分类matlab仿真,对比线性分类和非线性分类
    1.算法仿真效果matlab2022a仿真结果如下:    2.算法涉及理论知识概要         SVM通常用对偶问题来求解,这样的好处有两个:1、变量只有N个(N为训练集中的样本个数),原始问题中的变量数量与样本点的特征个数相同,当样本特征非常多时,求解难度较大。2、可以方便地引入......