- 论文解读(VAT)《Virtual Adversarial Training: A Regularization Method for Supervise
论文信息论文标题:VirtualAdversarialTraining:ARegularizationMethodforSupervisedandSemi-SupervisedLearning论文作者:TakeruMiyato,S.Maeda,MasanoriKoyama,S.Ishii论文来源:2020ECCV论文地址:download 论文代码:download视屏讲解:click1前言提出问题:在......
- 论文解读(PGD)《Towards deep learning models resistant to adversarial attacks》
论文信息论文标题:Towardsdeeplearningmodelsresistanttoadversarialattacks论文作者:AleksanderMadry,AleksandarMakelov,LudwigSchmidt,DimitrisTsipras,AdrianVladu论文来源:ICLR2018论文地址:download 论文代码:download视屏讲解:click1 介绍对抗攻击2......
- 论文解读(FGSM)《Explaining and Harnessing Adversarial Examples》
论文信息论文标题:ExplainingandHarnessingAdversarialExamples论文作者:IanJ.Goodfellow,JonathonShlens,ChristianSzegedy论文来源:ICLR2015论文地址:download 论文代码:download视屏讲解:click1 介绍对抗攻击2方法扰动:$\eta=\varepsilon\operat......
- 迁移学习(PAT)《Pairwise Adversarial Training for Unsupervised Class-imbalanced Dom
论文信息论文标题:PairwiseAdversarialTrainingforUnsupervisedClass-imbalancedDomainAdaptation论文作者:WeiliShi,RonghangZhu,ShengLi论文来源:KDD2022论文地址:download 论文代码:download视屏讲解:click1摘要提出问题:类不平衡问题;解决方法:提出了一......
- 论文解读( FGSM)《Adversarial training methods for semi-supervised text classificat
论文信息论文标题:Adversarialtrainingmethodsforsemi-supervisedtextclassification论文作者:TaekyungKim论文来源:ICLR2017论文地址:download 论文代码:download视屏讲解:click1 背景1.1 对抗性实例(Adversarialexamples)通过对输入进行小扰动创建的实例,可显著增加机器......
- 迁移学习(CDA)《CDA:Contrastive-adversarial Domain Adaptation 》
论文信息论文标题:CDA:Contrastive-adversarialDomainAdaptation论文作者:NishantYadav,M.Alam,AhmedK.Farahat,DipanjanGhosh,ChetanGupta,A.Ganguly论文来源:2023 ArXiv论文地址:download 论文代码:download视屏讲解:click1介绍基于域对齐的域适应方法实现了......
- 02.Deep Reinforcement Learning for Quantitative Trading Challenges and Opportuni
DeepReinforcementLearningforQuantitativeTradingChallengesandOpportunities量化交易的深度强化学习:挑战与机遇---IEEE背景量化交易:量化交易是指借助现代统......
- 虚假新闻检测(CALN)《Open-Topic False Information Detection on Social Networks with
论文信息论文标题:Open-TopicFalseInformationDetectiononSocialNetworkswithContrastiveAdversarialLearning论文作者:GuanghuiMa,ChunmingHu,LingGe,Hon......
- 迁移学习(CDAN)《Conditional Adversarial Domain Adaptation》(已复现迁移)
论文信息论文标题:ConditionalAdversarialDomainAdaptation论文作者:YaroslavGanin,EvgeniyaUstinova,HanaAjakan,PascalGermain论文来源:JMLR2016论文地址:downl......
- 【水下图像增强】Enhancing Underwater Imagery using Generative Adversarial Networ
原始题目EnhancingUnderwaterImageryusingGenerativeAdversarialNetworks中文名称使用GAN增强水下图像发表时间2018年1月11日平台ICRA2018......