首页 > 其他分享 >20230410 训练记录:最小瓶颈路 / lca

20230410 训练记录:最小瓶颈路 / lca

时间:2023-04-10 23:25:29浏览次数:61  
标签:瓶颈 Kruskal 20230410 最小 dfs int lca now

初识最小瓶颈路其实是上海那道著名的铜牌题,其次就是 P1396 营救

P1967 [NOIP2013 提高组] 货车运输 / 最小瓶颈路

\(\mathcal O(m \log m + (n + q)\log n)\) 最大生成树(森林)两点间最小边权,直接在倍增 lca 向上爬的时候更新答案。

问题反过来,最小生成树上的瓶颈(最大边权)也是一样的,双倍经验捏:LOJ #136. 最小瓶颈路

注意不能使用 dep[u] = dep[p] + 1 而将 \(p = 0\),换言之不能 dfs(i, 0),为了避免重复访问,dfs 的时候不记父亲节点。

展开代码
void dfs(int u) {
    for (int i = h[u]; i; i = graph[i].t) {
        if (int v = graph[i].f; !dep[v]) {
            dep[v] = dep[u] + 1, f[v][0] = u, w[v][0] = graph[i].w;
            dfs(v);
        }
    }
}
// ...
for (int i = 1; i <= n; i++) if (!dep[i]) {
    dep[i] = 1;
    dfs(i);
    f[i][0] = i; // 之前因为这里无脑设成 f[u][0] = p 而一直出错
    w[i][0] = INT_MAX;
}

哇呜呜,怎么还有加强版,学!

LOJ#137. 最小瓶颈路(加强版)/ Kruskal 重构树

使用 Kruskal 重构树来求解。 感觉已经看过太多太多次克鲁斯卡尔重构树了,但是都没有认真学过。

最小瓶颈路
= 最小生成树两点间简单路径上的最大值
= Kruskal 重构树上两点之间的 \(\mathop{lca}\) 的权值。

建立 Kruskal 重构树就是在做 Kruskal 的过程中,原本要合并 \(u\) 和 \(v\),现在改为新建一个点 \(t\),连边 \(u \leftarrow t \rightarrow v\),\(t\) 的点权设为 \(u, v\) 的边权。

这方法对最大生成树两点间最小边权也适用。

void Kruskal() {
    sort(edge + 1, edge + 1 + m, cmp);
    for (int i = 1; i <= n; ++i) ff[i] = i;
    for (int i = 1; i <= m; ++i) {
        int fu = find(edge[i].u), fv = find(edge[i].v);
        if (fu != fv) {
            val[++cnt] = edge[i].dis;
            ff[cnt] = ff[fu] = ff[fv] = cnt;
            add(fu, cnt), add(cnt, fu);
            add(fv, cnt), add(cnt, fv);
        }
    }
}

倍增可以得 \(75 \rm pts\),树剖可以得 \(90 \rm pts\)。

image

image

100pts(Tarjan / RMQ 求 lca)

满分得配合 Tarjan / RMQ 求 \(\mathop{lca}\),这俩都是离线算法,不过看起来貌似 RMQ 更厉害一点

草,怎么还要复习稀疏表,咋写的来着。

用 \(f_{i, j}\) 表示 \([i, i + 2^j)\) 的答案,只要有 \(x \mathop{op} x = x\) 就可以用。递推就是倍增:

\[f_{i, j} = f_{i, j - 1} \mathop{op} f_{i + 2^{j - 1}, j - 1} \]

反正就是 \([i, i + 2^{j - 1}) \cup [i + j^{j - 1}, i + 2 \times 2 ^ {j - 1}) = [i, i + 2^j)\)。

查询的时候就拆成 \([l, l + 2 ^ t) \cup [r - 2^t + 1, r]\)。

结论是:记 \(\text{pos}_u\) 为 \(u\) 在欧拉序中第一次出现的位置,则

\[\text{pos}_{\mathop{lca}(u, v)} = \min\limits_{k = u}^v\{ \text{pos}_k \} \]

意为从 \(u\) 走到 \(v\) 经过欧拉序最小的节点就是 \(\mathop{lca}(u, v)\)。

记个板子,明天再背。
void dfs(int now, int fa) {
  dpth[now] = dpth[fa] + 1;
  sec[++cnt] = now;
  pos[now] = cnt;

  for (int i = head[now]; i; i = e[i].nxt) {
    if (fa != e[i].to) {
      dfs(e[i].to, now);
      sec[++cnt] = now;
    }
  }
}

void init() {
  dfs(2 * n - 1, 0);
  for (int i = 1; i <= 4 * n; i++) {
    dp[i][0] = sec[i];
  }
  for (int j = 1; j <= 19; j++) {
    for (int i = 1; i + (1 << j) - 1 <= 4 * n; i++) {
      dp[i][j] = dpth[dp[i][j - 1]] < dpth[dp[i + (1 << (j - 1))][j - 1]]
                     ? dp[i][j - 1]
                     : dp[i + (1 << (j - 1))][j - 1];
    }
  }
}

int lca(int x, int y) {
  int l = pos[x], r = pos[y];
  if (l > r) {
    swap(l, r);
  }
  int k = log2Values[r - l + 1];
  return dpth[dp[l][k]] < dpth[dp[r - (1 << k) + 1][k]]
             ? dp[l][k]
             : dp[r - (1 << k) + 1][k];
}

现在,终于可以来看看这道题了。

Life is a game

先学了一个单词 threshold(/ˈθreʃˌhoʊld/): 门槛,瓶颈。

题意

\(n\) 个点 \(m\) 条边,点权表示这个点拥有的金币(只能获得一次),边权表示前往联通的点至少需要有 \(w\) 金币。
多组询问:从 \(x\) 点出生,初始拥有 \(k\) 个金币,最多可以得到的金币数为多少?
\(n, m, q \leq 10^5; a_i \leq 10^4; k, w \leq 10 ^ 9\)

实际的边权为 \(w_i - a_u, w_i - a_v\),随后在 Kruskal 重构树上不断向上爬,直到 \(w_{x, i} \gt k\),此时 \(a_x + k\) 即为所求。

展开代码
#include <bits/stdc++.h>

using ll = long long;

const int N = 200010, M = N * 2;

int n, m, q;
ll a[N];

int val[N], t = 0, f[N][20];
ll w[N][20];

struct edge {
    int f, w, t;
    bool operator< (const edge &_) const {
        return w < _.w;
    }
} mst[N];

int p[N];
int find(int x) {
    return p[x] = p[x] == x ? x : find(p[x]);
}

void Kruskal() {
    std::sort(mst + 1, mst + m + 1);
    for (int i = 1; i <= n * 2; i++)
        p[i] = i;

    t = n;
    for (int i = 1, edgs = 0; i <= m; i++) {
        int u = find(mst[i].f);
        int v = find(mst[i].t);
        int w = mst[i].w;

        if (u != v) {
            a[++t] = a[u] + a[v];
            p[u] = p[v] = f[u][0] = f[v][0] = t;
            ::w[u][0] = w - a[u];
            ::w[v][0] = w - a[v];
            edgs += 1;
        }

        if (edgs == n - 1)
            break;
    }
}

int main() {
    scanf("%d%d%d", &n, &m, &q);
    for (int i = 1; i <= n; i++) scanf("%lld", a + i);

    for (int i = 1; i <= m; i++) {
        int u, v, w;
        scanf("%d%d%d", &u, &v, &w);
        mst[i] = {u, w, v};
    }

    Kruskal();

    a[0] = a[t];
    int lg = std::__lg(t) + 1;
    for (int j = 1; j <= lg; j++) {
        for (int i = 1; i <= t; i++) {
            f[i][j] = f[f[i][j - 1]][j - 1];
            w[i][j] = std::max(w[i][j - 1], w[f[i][j - 1]][j - 1]);
        }
    }

    while (q --) {
        int x, k;
        scanf("%d%d", &x, &k);

        for (int i = lg; ~i; i--) {
            if (w[x][i] <= k)
                x = f[x][i];
        }

        printf("%lld\n", a[x] + k);
    }

    return 0;
}

总结

今天一直在学习树上问题,希望在天梯赛之前能够磨练自己的数据结构和树论水平,等天梯赛选上西安之后再复习数论。慢慢地要改变之前的学习方式了,得开始背一背板子,定期做做复习工作。

加油喵。

标签:瓶颈,Kruskal,20230410,最小,dfs,int,lca,now
From: https://www.cnblogs.com/patricky/p/train-20230410.html

相关文章

  • 一个人的职业生涯之旅 —— 应届生求职、面试、Offer、跳槽(发展瓶颈、薪资倒挂、职业
    一、应届生求职问题1、求职平台1、Boss直聘2、前程无忧3、拉勾网4、应届生求职网站_最新更新校园招聘/实习机会/内推资讯_牛客网_牛客网_牛客网2、简历怎么写2.1、简历照片1、要与本人形象相符,不要看上去有较大差别,使用最近半年内的免冠照片,选择能够显示自己气质佳的照片,但......
  • HTTP协议的瓶颈&双工通信的WebScocket与HTTP
    HTTP协议的瓶颈影响HTTP网络请求的因素1.带宽2.延迟 HTTP协议的瓶颈1.一条连接只可发送一个请求2.请求只能从客户端开始,客户端不可以接受除响应以外的指令3.请求/响应头部不经压缩就发送4.每次互相发送相同的头部造成的浪费较多5.非强制压缩发送 双工通信的WebScock......
  • 测试人员的瓶颈期
    测试人员的瓶颈期做测试久了,会在所难免地碰到职业瓶颈期,这很正常,从事任何职业的工作人员都会遇到,关键是要看你如何去克服它。对优秀的软件测试人员来讲,除了要具备全面的技能、丰富的经验、良好的心理素质,最重要的还有:态度。有端正的态度,会产生责任心,去尽力完成一切工作,克服......
  • 7·1HTTP协议的瓶颈|7·2双工通信的WebScoket|7·3探索式的实践-SPDY|7·4期盼已久的H
    HTTP协议的瓶颈影响Http网络请求的原因带宽延迟HTTP协议的瓶颈一条连接上只可发送一个请求请求只能从客户端开始。客户端不可以接受除响应意外的指令请求/响应头部不经压缩就发送每次互相发送相同的头部造成的浪......
  • Socialcam引进YouTube内容 自砸招牌还是另有所图
    你能想象优酷视频网站上充斥着腾讯视频内容吗?这种事情就发生在知名个人视频分享应用Socialcam上,近来这个应用频频出现YouTube网站内容,而且YouTube标识赫然在目。详情:这对于一个在排行榜上到了一定位置,用户群开始稳定的应用来说,着实令人费解。前些日子苹果AppStore还显示了Social......
  • [LNOI2014] LCA 树链剖分+离线处理+lca转化
    困困的开始了我的修炼树剖之旅途考虑怎么搞这个lca是说,习惯了倍增求lca,突然冒出这么一个东西还真不会搞那要么能一次性求很多个lca(?),要么把deep[lca(i,z)]这个东西转化......
  • HTTP协议的瓶颈、WebSocket与HTTP
    影响HTTP网络请求的因素带宽延迟HTTP协议的瓶颈一条连接上只发送一个请求请求只能从客户端开始。客户端不可以接受除响应以外的指令请求/响应头部不经压缩就发送每......
  • 欧拉序+ST表 O(nlogn+q)求LCA
    欧拉序:每次遍历到树上的一个点,就加进欧拉序如123​45这颗树的欧拉序是121343431这样我们可以发现一个重要的性质:两个点的LCA是欧拉序之间dep最小的点......
  • 性能测试常见瓶颈分析及调优方法
    转载:https://www.cnblogs.com/imyalost/p/10850811.html在性能测试过程中,最重要的一部分就是性能瓶颈定位与调优。而引发性能瓶颈的原因是多种多样的,在之前的博客:常见的性......
  • 最近树上公共祖先(LCA)
    捏......